Q- For non-viscose fluid, find the power required to actuate the piston to get 2750 psi with an 8.5 second stroke at $6.5 \mathrm{gal} /$ minute at outlet.

Let the velocity of the fluid at the exit point is v, and the area of cross section is A then the displacement of the fluid per unit time will be v and the volume of the fluid flowing per second $\Delta \mathrm{Q} / \Delta \mathrm{t}$ is given by

$$
\begin{equation*}
\Delta \mathrm{Q} / \Delta \mathrm{t}=\mathrm{A} * \mathrm{v} \tag{1}
\end{equation*}
$$

As the rate of volume flow is given,
Let the pressure of the fluid at exit is P then the force on the fluid in the exit will be

$$
\mathrm{F}=\mathrm{P} * \mathrm{~A}
$$

And hence the power given to the fluid to drive it will be

$$
\text { Power }=\mathrm{F} * \mathrm{v}=\mathrm{P} * \mathrm{~A} * \mathrm{v}
$$

Substituting v from equation 1 we get

$$
\text { Power }=P * A * \frac{1}{A} * \frac{d Q}{d t}
$$

Or \quad Power $==P * \frac{d Q}{d t}$
As the fluid is non-viscous the power required to drive the fluid is coming from the power delivered to the piston, hence input power will also be given by

$$
\begin{array}{ll}
& \text { Input Power }=P * \frac{d Q}{d t} \\
\text { Or } & =(2790 p s i) *(6.5 \mathrm{gal} / \mathrm{min}) \\
\text { Or } & =\left(2790 \mathrm{lb} / f t^{2}\right) *\left(6.5 * \frac{231 \mathrm{ln}^{3}}{60 \mathrm{~s}}\right)=\left(2790 \mathrm{lb} / f t^{2}\right) *\left(6.5 * \frac{231 f t^{3}}{60 s^{*} 12^{3}}\right) \\
\text { Or } & =40.405(f * l b / s)=40.405 / 550 \mathrm{hp}=7.35 * 10^{-2} \mathrm{hp}
\end{array}
$$

1 horse power $=550 \mathrm{ft}-\mathrm{lb} / \mathrm{sec}$
The gallon is taken as USA fluid gallon.

