Q- A solenoid has length $L=30 \mathrm{~cm}$, radius 6 cm , and $N_{1}=5500$ turns; its axis coincides with the z-axis. A circular conducting loop containing $\mathrm{N}_{2}=15$ turns of radius a $=3 \mathrm{~cm}$ is centered inside the solenoid; the plane of the loop makes a 30° angle with respect to the z-axis. The loop has a net resistance of $R=0.015 \Omega$. The current in the windings of the solenoid is varying with time according to the expression $\mathrm{I}_{1}(\mathrm{t})=0.35 \mathrm{~A}+0.75(\mathrm{~A} / \mathrm{s}) \mathrm{t}$. (When viewed from the positive z-direction, current traveling in the clockwise direction is considered positive.)

Calculate the induced current in the loop at $\mathrm{t}=4 \mathrm{~s}$.
The number of turns in the solenoid $N_{1}=5500$
The length of the solenoid $\mathrm{L}=30 \mathrm{~cm}=0.3 \mathrm{~m}$ Hence the number of turns per unit length will be

$$
\mathrm{n}=\mathrm{N}_{1} / \mathrm{L}
$$

The magnetic field B in a solenoid carrying current I_{1} at point where the edges of the solenoid subtends angles α_{1} and α_{2} is given by

$$
\begin{aligned}
\mathrm{B} & =\frac{1}{2} \mu_{0} n I_{1}\left(\cos \alpha_{1}-\cos \alpha_{2}\right) \\
\text { Or } \quad \mathrm{B} & =\frac{\mu_{0} N_{1} I_{1}}{2 L}\left(\cos \alpha_{1}-\cos \alpha_{2}\right)
\end{aligned}
$$

As the loop is centered at the solenoid, the angle $\alpha_{2}=180^{\circ}-\alpha_{1}$ and hence the field at the center of the solenoid is given by

$$
\mathrm{B}=\frac{\mu_{0} N_{1} I_{1}}{2 L}\left(\cos \alpha_{1}-\cos \left(180^{\circ}-\alpha_{1}\right)\right)=\frac{\mu_{0} N_{1} I_{1}}{2 L}\left(\cos \alpha_{1}+\cos \alpha_{1}\right)=\frac{\mu_{0} N_{1} I_{1} \cos \alpha_{1}}{L}
$$

As the current in the coil is in clockwise direction as seen from $+z$ direction, using the right hand rule the direction of magnetic field in the solenoid is towards the - z direction or to the left.

And hence the flux through the loop is given by

$$
\phi_{B}=N_{2}(\vec{B} \bullet \vec{A})=N_{2}\left(\frac{\mu_{0} N_{1} I_{1} \cos \alpha_{1}}{L}\right) A \cos \theta=\frac{\mu_{0} N_{1} N_{2} A I_{1} \cos \alpha_{1} \cos \theta}{L}
$$

Where θ is the angle between the magnetic field vector and the area vector A
As the area vector is normal to the plane of the loop the angle between the field B and the area A vectors will be $\theta=90^{\circ}+30^{\circ}=120^{\circ}$

Hence the EMF induced in the loop is given by faraday's law as

$$
\varepsilon=-\frac{d \phi_{B}}{d t}=-\frac{\mu_{0} N_{1} N_{2} A \cos \alpha_{1} \cos \theta}{L} * \frac{d I_{1}}{d t}
$$

Now as $\mathrm{I}_{1}(\mathrm{t})=0.35 \mathrm{~A}+0.75(\mathrm{~A} / \mathrm{s}) \mathrm{t}$

$$
\frac{d I_{1}}{d t}=0+0.75=\frac{3}{4} \mathrm{~A} / \mathrm{s}
$$

(Rate of change of current is independent of time)
Substituting in above equation we get

$$
\varepsilon=-\frac{d \phi_{B}}{d t}=-\frac{3 \mu_{0} N_{1} N_{2} A \cos \alpha_{1} \cos \theta}{4 L}
$$

And the current in the loop as a function of time will be given by

$$
I_{2}=\frac{\varepsilon}{R}=-\frac{3 \mu_{0} N_{1} N_{2} A \cos \alpha_{1} \cos \theta}{4 L R}
$$

Now here

$$
\begin{aligned}
& \mu 0=4 \pi^{*} 10^{-7} \\
& \mathrm{~N}_{1}=5500 \\
& \mathrm{~N}_{2}=15 \\
& \mathrm{~A}=\pi \mathrm{r}^{2}=3.14 * 0.03^{2}=2.83 * 10^{-3} \mathrm{~m}^{2} \\
& \operatorname{Cos} \alpha_{1}=\frac{15}{\sqrt{15^{2}+6^{2}}}=0.9285 \\
& \operatorname{Cos} \theta=\cos 120^{0}=-0.5 \\
& \mathrm{t}=4 \mathrm{~s} \\
& \mathrm{~L}=0.3 \mathrm{~m} \\
& \mathrm{R}=0.015 \Omega
\end{aligned}
$$

And
Substituting all data, we get the current at $\mathrm{t}=4 \mathrm{~s}$ as

$$
I_{2}=-\frac{3 * 4 \pi * 10^{-7} * 5500 * 15 * 2.83 * 10^{-3} * 0.9285 *(-0.5)}{4 * 0.3 * 0.015}
$$

Or $\quad I_{2}=0.0227 \mathrm{~A}$
Hence current in the loop at any time is
$\mathrm{I}=0.0227 \mathrm{~A}$

