Q- A torque of $50 \mathrm{~N} . \mathrm{m}$ accelerates a wheel from rest to $100 \mathrm{rev} / \mathrm{min}$ in 5 seconds.
(a) What is the angular displacement of the wheel?
(b) What is the angular acceleration of the wheel?
(c) What is the moment of inertia of the wheel?

Corresponding to the second law of motion $F=$ ma the equation of rotational motion is given by

$$
\tau=I \alpha
$$

Here $\tau$ is the torque and $I$ is the moment of inertia of the body.
Here $\tau=50$ N.m

$$
\mathrm{t}=5 \mathrm{~s}
$$

$$
\omega=100 \mathrm{rev} / \mathrm{min}=100 * 2 \pi / 60 \mathrm{rad} / \mathrm{s}=10 \pi / 3 \mathrm{rad} / \mathrm{s}
$$

(a)

As the angular acceleration of the wheel is constant
Angular displacement = average angular velocity* time
Or $\quad \theta=\left(\frac{\omega_{0}+\omega}{2}\right) * t$
Or $\quad \theta=\left(\frac{0+10 \pi / 3}{2}\right) * 5$
Or $\quad \theta=\left(\frac{5 \pi}{3}\right) * 5=\frac{25 \pi}{3} \mathrm{rad}=26.18 \mathrm{rad}$
(b)

Using first equation of rotational motion we have

Or $\quad 10 \pi / 3=0+\alpha^{*} 5$
Gives $\alpha=2 \pi / 3 \mathrm{rad} / \mathrm{s}^{2}=2.09 \mathrm{rad} / \mathrm{s}^{2}$
(c)

The moment of inertia of the wheel is given by

$$
I=\frac{\tau}{\alpha}=\frac{50}{2.09}=23.87 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

