physicshelpline

Q- Three resistors ($R_{1}=120$ Ohms, $R_{2}=330$ Ohms, and $R_{3}=240 \mathrm{Ohms}$) and an ideal inductor $(L=1.6 \mathrm{mH})$ are connected to a battery $(V=9 \mathrm{~V})$ through a switch as shown in the figure. The switch has been open for a long time before it is closed at $\mathrm{t}=0$. At what time t, does the current through the inductor (I_{3}) reach a value that is 63% of its maximum value?

Here as soon as the switch is closed the current starts flowing in the $R_{1} R_{2}$ loop due to which there will be a potential difference across R_{2} which force a current in the series of R_{3} and the inductor L. Due to electromagnetic induction an EMF will be induced in the inductor which changes with time and hence the currents in both loop changes. Let at time t after the switch is closed, the currents in the three parts are I_{1},
 I_{2} and I_{3} respectively.

According to junction law the charge will not accumulate at any junction we have

$$
\begin{equation*}
\mathrm{I}_{1}=\mathrm{I}_{2}+\mathrm{I}_{3} \tag{1}
\end{equation*}
$$

As R_{2} is in parallel with R_{3} and L the potential difference across the two branches will be equal and this gives

$$
\begin{equation*}
\mathrm{I}_{2} \mathrm{R}_{2}=\mathrm{I}_{3} \mathrm{R}_{3}+\mathrm{L}^{*}\left(\mathrm{dI}_{3} / \mathrm{dt}\right) \tag{2}
\end{equation*}
$$

As the EMF of the battery is dropped in the left loop, using loop rule we get

$$
\begin{equation*}
\varepsilon=I_{1} R_{1}+I_{2} R_{2} \tag{3}
\end{equation*}
$$

Substituting the value of I_{1} from equation 1 in 3 we get

$$
\begin{align*}
& \varepsilon=\left(I_{2}+I_{3}\right) R_{1}+I_{2} R_{2}=I_{2}\left(R_{1}+R_{2}\right)+I_{3} R_{1} \\
\text { Or } \quad I_{2} & \left.=\frac{\varepsilon-I_{3} R_{1}}{\left(R_{1}+R_{2}\right)} \quad-\cdots \cdots-\cdots-\cdots-\cdots\right) \tag{4}
\end{align*}
$$

Substituting this value of I_{2} in equation 2 we get

$$
\frac{\varepsilon-I_{3} R_{1}}{\left(R_{1}+R_{2}\right)} * R_{2}=I_{3} R_{3}+L \frac{d I_{3}}{d t}
$$

Or $\quad L \frac{d I_{3}}{d t}=\frac{\varepsilon-I_{3} R_{1}}{\left(R_{1}+R_{2}\right)} * R_{2}-I_{3} R_{3}$
Or $\quad L \frac{d I_{3}}{d t}=\frac{\varepsilon R_{2}-I_{3}\left(R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}\right)}{\left(R_{1}+R_{2}\right)}$
Or $\quad \frac{d I_{3}}{\varepsilon R_{2}-I_{3}\left(R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}\right)}=\frac{d t}{L\left(R_{1}+R_{2}\right)}$
Integrating with proper limits we have (initially current in the inductance is zero)

$$
\begin{aligned}
& \int_{0}^{I_{3}} \frac{d I_{3}}{\varepsilon R_{2}-I_{3}\left(R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}\right)}=\int_{0}^{t} \frac{d t}{L\left(R_{1}+R_{2}\right)} \\
& \text { Or } \quad-\frac{1}{\left(R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}\right)} \ln \left[\frac{\varepsilon R_{2}-I_{3}\left(R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}\right)}{\varepsilon R_{2}}\right]=\frac{t}{L\left(R_{1}+R_{2}\right)} \\
& \text { Or } \quad \ln \left[\frac{\varepsilon R_{2}-I_{3}\left(R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}\right)}{\varepsilon R_{2}}\right]=-\frac{\left(R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}\right) t}{L\left(R_{1}+R_{2}\right)} \\
& \text { Or }\left[1-\frac{I_{3}\left(R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}\right)}{\varepsilon R_{2}}\right]=e^{-\frac{\left(R_{1} R_{2}+R_{2} R_{3}+R_{2} R_{3}\right)^{* t t}}{L\left(R_{1}+R_{2}\right)}} \\
& \text { Or } I_{3}=\frac{\varepsilon R_{2}}{\left(R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}\right)}\left[1-e^{-\frac{\left(R_{1} R_{2}+R_{2} R_{3}+R_{2} R_{3}\right)^{*} t}{L\left(R_{1}+R_{2}\right)}}\right]
\end{aligned}
$$

The elements in the circuit shown above have the following values: $\varepsilon=9 \mathrm{~V}, L=1.6 \mathrm{mH}, R_{1}$ $=120 \Omega, R_{2}=330 \Omega$ and $R_{3}=240 \Omega$.

$$
I_{3}=\frac{9 * 330}{120 * 330+120 * 240+330 * 240}\left[1-e^{-(120 * 330+120 * 240+330 * 240) t}\right]
$$

Or $\quad I_{3}=0.021\left[1-e^{-147600 * t}\right]$
The current is maximum at long time and will be 0.021 A . hence the required time t is given by

$$
0.021 * \frac{63}{100}=0.021\left[1-e^{-147600 * t}\right]
$$

Or

$$
\frac{63}{100}=1-e^{-147600 * t}
$$

$$
e^{-147600 * t}=1-\frac{63}{100}
$$

Or $\quad e^{-147600 * t}=0.37$
Or $\quad e^{147600 * t}=2.703$

Or $\quad 147600 * t=\ln 2.703$
Or $\quad 147600 * t=0.994$
Or $\quad t=6.74 * 10^{-6} \mathrm{~s}$

