physicshelpline

Q- The particle's velocity moving along the x -axis varies according to the expression velocity $=50-10 t^{2}$, Find the average acceleration in the time interval $t=0$ to $t=2.0$ seconds.

The average acceleration is the ratio of change in velocity to the time interval, or

$$
\langle a\rangle=\frac{\Delta v}{\Delta t}
$$

Now velocity is given by

$$
v=50-10 t^{2}
$$

Thus, velocity at $\mathrm{t}=0$ is given by

$$
v_{0}=50-10 * 0^{2}=50 \mathrm{~m} / \mathrm{s}
$$

And velocity at $\mathrm{t}=0$ is given by

$$
v_{2}=50-10 * 2^{2}=10 \mathrm{~m} / \mathrm{s}
$$

Thus, the change in velocity during this time interval of 2 s is

$$
\Delta v=v_{2}-v_{0}=10-50=-40 \mathrm{~m} / \mathrm{s}
$$

Hence the average acceleration during this interval is

$$
\langle a\rangle=\frac{\Delta v}{\Delta t}=\frac{-40}{2-0}=-20 \mathrm{~m} / \mathrm{s}^{2}
$$

(Negative shows retardation)

