Q- Two in-phase loudspeakers are located at (x, y) coordinates ($-2.5 \mathrm{~m},+2.0 \mathrm{~m}$) and (-2.5 $\mathrm{m},-2.0 \mathrm{~m})$. They emit identical sound waves with a 1.6 m wavelength and amplitude a. Determine the amplitude A of the sound at the five positions on the y-axis $(x=0)$ with the y values $0,0.5 \mathrm{~m}, 1.0 \mathrm{~m}, 2.0 \mathrm{~m}$.

The distance between the two sources $\quad d=2.0-(-2.0)=4.0 \mathrm{~m}$
Distance of the y axis from the line $S_{1} S_{2} \quad D=0-(-2.5)=2.5 \mathrm{~m}$
The wavelength of sound
$\lambda=1.6 \mathrm{~m}$
Consider a point P at a distance y from the centerline x axis. Using the Pythagoras theorem the path $\mathrm{S}_{1} \mathrm{P}$ and $\mathrm{S}_{2} \mathrm{P}$ is given by

	$S_{1} P=\sqrt{P M^{2}+S_{1} M^{2}}$
Or	$S_{1} P=\sqrt{(y-2.0)^{2}+D^{2}}$
And	$S_{2} P=\sqrt{P N^{2}+S_{2} N^{2}}$
Or	$S_{2} P=\sqrt{(y+2.0)^{2}+D^{2}}$

Hence the path difference at P will be

$$
\begin{array}{ll}
& S_{2} P-S_{1} P=\sqrt{(y+2.0)^{2}+D^{2}}-\sqrt{(y-2.0)^{2}+D^{2}} \\
\text { Or } & \delta=\sqrt{(y+2.0)^{2}+2.5^{2}}-\sqrt{(y-2.0)^{2}+2.5^{2}}
\end{array}
$$

As the two sources are in phase the phase difference between the waves at P is only due to path difference and hence is given by

$$
\begin{aligned}
\phi & =\frac{2 \pi * \delta}{\lambda} \\
\text { Or } \quad \phi & =\frac{2 \pi\left[\sqrt{(y+2.0)^{2}+2.5^{2}}-\sqrt{(y-2.0)^{2}+2.5^{2}}\right]}{\lambda} \text { radians } \\
\text { Or } \quad \phi & =\frac{360^{0}\left[\sqrt{(y+2.0)^{2}+2.5^{2}}-\sqrt{(y-2.0)^{2}+2.5^{2}}\right]}{1.6} \text { degrees }
\end{aligned}
$$

Now for the different points on the y axis substituting the values of y we have
(1) at $y=0$

$$
\phi=\frac{360^{0}\left[\sqrt{(0+2.0)^{2}+2.5^{2}}-\sqrt{(0-2.0)^{2}+2.5^{2}}\right]}{1.6}=0^{0}
$$

And hence resulting amplitude A is given by

$$
\begin{aligned}
A & =\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \phi} \\
\text { Or } \quad A & =\sqrt{a^{2}+a^{2}+2 \cdot a \cdot a \cdot \cos 0^{0}}=2 \cdot a
\end{aligned}
$$

Hence $y=0 ; A=2 a$
(2) at $y=0.5$

$$
\phi=\frac{360^{0}\left[\sqrt{(0.5+2.0)^{2}+2.5^{2}}-\sqrt{(0.5-2.0)^{2}+2.5^{2}}\right]}{1.6}=\frac{360^{0}[3.535-2.915]}{1.6}=139.5^{0}
$$

And hence resulting amplitude A is given by

$$
A=\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \phi}
$$

Or $\quad A=\sqrt{a^{2}+a^{2}+2 \cdot a \cdot a \cdot \cos 139 \cdot 5^{0}}=0.69 \cdot a$
Hence $y=0.5 ; A=0.69 a$
(3) At $y=1.0$

$$
\phi=\frac{360^{0}\left[\sqrt{(1.0+2.0)^{2}+2.5^{2}}-\sqrt{(1.0-2.0)^{2}+2.5^{2}}\right]}{1.6}=\frac{360^{0}[3.905-2.692]}{1.6}=272.9^{0}
$$

And hence resulting amplitude A is given by

Or $\quad A=\sqrt{a^{2}+a^{2}+2 \cdot a \cdot a \cdot \cos 272 \cdot 9^{0}}=1 \cdot 45 \cdot a$

Hence $y=1.0 ; A=1.45$ a

(4) at $y=2.0$

$$
\phi=\frac{360^{0}\left[\sqrt{(2.0+2.0)^{2}+2.5^{2}}-\sqrt{(2.0-2.0)^{2}+2.5^{2}}\right]}{1.6}=\frac{360^{0}[4.72-2.5]}{1.6}=498.8^{0}
$$

And hence resulting amplitude A is given by

Or

$$
\begin{aligned}
A & =\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \phi} \\
\text { Or } \quad A & =\sqrt{a^{2}+a^{2}+2 \cdot a \cdot a \cdot \cos 498 \cdot 8^{0}}=0.703 \cdot a
\end{aligned}
$$

Hence $y=2.0 ; A=0.703 a$

