Q- An object 5 cm high is located 73 cm from a converging lens of focal length $f_{1}=45 \mathrm{~cm}$. A second converging lens of focal length f_{2} is located 178 cm from the first lens. An image of the object is to be formed on a screen 200 cm from the second lens. What must be the focal length f_{2} of the second lens so that the final image appears on the screen?

The lens formula gives the relation between the object distance u image distance v and the focal length f as

$$
\frac{1}{v}-\frac{1}{u}=\frac{1}{f}
$$

For the first lens using the signs according to sign conventions

$$
\begin{aligned}
& u=-73 \mathrm{~cm} \\
& v=? \\
& \mathrm{f}=45 \mathrm{~cm}
\end{aligned}
$$

We have $\quad \frac{1}{v}-\frac{1}{-73}=\frac{1}{45}$
Or

$$
\frac{1}{v}=-\frac{1}{73}+\frac{1}{45}=\frac{-45+73}{73 * 45}=\frac{28}{3285}
$$

Gives

$$
v=3285 / 28=117.3 \mathrm{~cm}
$$

This image will behave as an object for the second lens at a distance $x_{2}-v$ form it on the right side and forms an image on the screen which is $x_{3}=200 \mathrm{~cm}$ from the lens hence if the focal length of the second lens be f_{2} then for the second lens with proper sings we have

$$
\begin{aligned}
& \mathrm{u}=-(178-117.3)=-60.7 \mathrm{~cm} \\
& \mathrm{v}=+200 \mathrm{~cm} \\
& \mathrm{f}_{2}=?
\end{aligned}
$$

Using lens formula for the second lens we get.

$$
\frac{1}{200}-\frac{1}{-60.7}=\frac{1}{f 2}
$$

Or $\quad \frac{1}{f 2}=\frac{60.7+200}{200 * 60.7}=\frac{260.7}{12140}$
Or $\quad f_{2}=12140 / 260.7=46.57 \mathrm{~cm}$.
Thus the focal length of the second lens must be 46.57 cm .

