Q- Two charges are placed between the plates of a parallel plate capacitor. One charge is $+\mathrm{q}_{1}$ and the other is $\mathrm{q}_{2}=+6.58 \mu \mathrm{C}$. charge per unit are on each plate has a magnitude of σ $=1.39 * 10^{-4} \mathrm{C} / \mathrm{m}^{2}$. If the magnitude of force on q_{1} due to q_{2} is equal to that on q_{1} due to the electric field of the capacitor, what is the distance between the two charges?

If the distance between the two charges is r then the force on q_{1} due to $q 2$ is given by Coulomb's law as

$$
F=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r^{2}}
$$

The field between the capacitor plates (flux per unit area) is given by

$$
E=\frac{\sigma}{\epsilon_{o}}
$$

Hence force on charge q1 due to the field is given by

$$
F=q_{1} E=q_{1} \frac{\sigma}{\epsilon_{o}}
$$

Equating the two forces we get

$$
q_{1} \frac{\sigma}{\epsilon_{o}}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r^{2}}
$$

Gives $r^{2}=\frac{1}{4 \pi} \frac{q_{2}}{\sigma}$
Or $\quad r=\sqrt{\frac{1}{4 \pi} \frac{q_{2}}{\sigma}}=\sqrt{\frac{6.58 * 10^{-6}}{4 * 3.14 * 1.39 * 10^{-4}}}=6.14 * 10^{-2} \mathrm{~m}$

