Q- Q- A particle executes linear harmonic motion about the point $x=0$. At $t=0$, it has a displacement $x=0.37 \mathrm{~cm}$ and zero velocity. The frequency of oscillation is 0.25 Hz . Determine
(a) The period (b) the angular frequency (c) the amplitude (d) the displacement at time t
(e) fthe velocity at time $t(f)$ the maximum speed (g) the maximum acceleration (h) the displacement at $t=3.0 \mathrm{~s}$, and (i) the speed at $\mathrm{t}=3.0 \mathrm{~s}$.

The equation for the displacement x of a particle executing simple harmonic motion in a straight line to and fro about its mean position, as a function of time t is given by

$$
\begin{equation*}
x=A \sin \left(\omega t+\phi_{0}\right) \tag{1}
\end{equation*}
$$

Where A is the amplitude (the maximum displacement of the particle during motion), ω is the angular frequency (the angular velocity of reference particle) and ϕ_{0} is the phase constant or initial phase angle of the particle at $t=0$

Differentiating equation 1 with respect to t we will get the velocity v of the particle as a function of time t as

$$
\begin{align*}
v & =\frac{d x}{d t}=A \omega \cos \left(\omega t+\phi_{0}\right) \\
\text { or } \quad v & =A \omega \cos \left(\omega t+\phi_{0}\right) \tag{2}
\end{align*}
$$

Differentiating again we get acceleration of the particle as a function of time

$$
\begin{align*}
& \quad \begin{array}{l}
a=\frac{d v}{d t}=-A \omega^{2} \sin \left(\omega t+\phi_{0}\right) \\
\text { or } \quad a
\end{array} \quad=-A \omega^{2} \sin \left(\omega t+\phi_{0}\right)
\end{align*}
$$

Now from our question at $\mathrm{t}=0$ the displacement is $\mathrm{x}=0.37 \mathrm{~cm}$ and velocity v is zero substituting these data in equations 1 and 2 we get

$$
\begin{equation*}
0.37=A \sin \left(\omega^{*} 0+\phi_{0}\right) \tag{4}
\end{equation*}
$$

Gives $A \sin \phi_{0}=0.37$
And $\quad 0=A \omega \cos \left(\omega^{*} 0+\phi_{0}\right)$
Gives $\cos \phi_{0}=0$
or $\quad \phi_{0}=\pi / 2$
Substituting in equation 4 we get

$$
\begin{equation*}
A \sin \pi / 2=0.37 \tag{6}
\end{equation*}
$$

Or $\quad A=0.37 \mathrm{~cm}$
Hence the equation of motion of the particle is given by

$$
\begin{equation*}
x=(0.37 \mathrm{~cm}) \sin (\omega t+\pi / 2) \tag{7}
\end{equation*}
$$

As the frequency n of oscillation is 0.25 Hz the angular frequency is given by

$$
\omega=2 \pi * n=2 \pi * 0.25=\frac{\pi}{2} \mathrm{rad} / \mathrm{s}
$$

And hence the equations for displacement, velocity and acceleration of the particle as a function of time can be rewritten as

$$
\begin{array}{rlrl}
& x & =(0.37 \mathrm{~cm}) \sin \left(\frac{\pi}{2} t+\frac{\pi}{2}\right) \\
\text { or } & x & =(0.37 \mathrm{~cm}) \sin \frac{\pi}{2}(t+1) \\
v & =(0.37 \mathrm{~cm})\left(\frac{\pi}{2} s^{-1}\right) \cos \frac{\pi}{2}(t+1) \\
\text { and } & a & =-(0.37 \mathrm{~cm})\left(\frac{\pi}{2} s^{-1}\right)^{2} \sin \frac{\pi}{2}(t+1) \tag{c}
\end{array}
$$

Now to the question
(a) The time period T is the time taken by the particle in one complete oscillation and the frequency n is the number of oscillation per unit time means in one second hence both are related as

$$
T=\frac{1}{n}
$$

As the frequency of the particle is 0.25 Hz hence the time period will be

$$
T=\frac{1}{n}=\frac{1}{0.25}=4 \mathrm{~s}
$$

(b) The angular frequency is the angular velocity with which reference particle (imaginary) make one complete revolution in one time period and hence given by

$$
\omega=\frac{2 \pi}{T}=\frac{2 \pi}{4}=\frac{\pi}{2}=1.57 . \mathrm{rad} / \mathrm{s}
$$

(c) The amplitude is the maximum displacement of the particle from its mean position during its motion and as the displacement is given by equation (A)

$$
\begin{equation*}
x=(0.37 \mathrm{~cm}) \sin \frac{\pi}{2}(t+1) \tag{A}
\end{equation*}
$$

x will be max when $\sin \frac{\pi}{2}(t+1)$ will have its maximum value that is 1 and hence the amplitude will be

$$
\mathrm{A}=0.37 \mathrm{~cm}=3.7 * 10^{-3} \mathrm{~m} .
$$

(d) The displacement at any time t is given by equation (A) hence

$$
x=(0.37 \mathrm{~cm}) \sin \frac{\pi}{2}(t+1)
$$

(e) The velocity of the particle as a function of time is given by equation (B) as

$$
\begin{equation*}
v=(0.37 \mathrm{~cm})\left(\frac{\pi}{2} s^{-1}\right) \cos \frac{\pi}{2}(t+1) \tag{B}
\end{equation*}
$$

(f) The speed of the particle will be maximum when the value of cosine term in the expression of velocity is maximum i.e. 1 hence

$$
v_{\max }=(0.37 \mathrm{~cm})\left(\frac{\pi}{2} s^{-1}\right)=0.37 * 1.57=0.581 \mathrm{~cm} / \mathrm{s}
$$

(g) The acceleration of the particle is given by the equation (C) as

$$
\begin{equation*}
a=-(0.37 \mathrm{~cm})\left(\frac{\pi}{2} s^{-1}\right)^{2} \sin \frac{\pi}{2}(t+1) \tag{c}
\end{equation*}
$$

Hence the maximum acceleration is given by

$$
a_{\max }=-(0.37 \mathrm{~cm})\left(\frac{\pi}{2} s^{-1}\right)^{2}=-0.913 \mathrm{~cm} / \mathrm{s}^{2}
$$

The magnitude of this acceleration is $0.913 \mathrm{~cm} / \mathrm{s}^{2}$. The negative sign correspond to the direction. Acceleration always points to the mean position.
(h) The displacement at any time is given by equation (A)

$$
x=(0.37 \mathrm{~cm}) \sin \frac{\pi}{2}(t+1)
$$

Hence at time $t=3.0 \mathrm{~s}$ the displacement of the particle is given by

$$
x(3.0)=(0.37 \mathrm{~cm}) \sin \frac{\pi}{2}(3.0+1.0)=(0.37 \mathrm{~cm}) \sin (2 \pi)=0
$$

Thus the displacement of the particle at $\mathrm{t}=3$ second is zero or the particle is at mean position.
(I) The speed of the particle is given by equation (B)

$$
v=(0.37 \mathrm{~cm})\left(\frac{\pi}{2} s^{-1}\right) \cos \frac{\pi}{2}(t+1)
$$

Hence at $\mathrm{t}=3.0 \mathrm{~s}$

$$
\begin{aligned}
v(3.0) & =(0.37 \mathrm{~cm})\left(\frac{\pi}{2} s^{-1}\right) \cos \frac{\pi}{2}(3+1)=(0.37 \mathrm{~cm})\left(\frac{\pi}{2} s^{-1}\right) \cos (2 \pi) \\
\text { Or } \quad v(3.0) & =(0.37 \mathrm{~cm})\left(1.57 s^{-1}\right) * 1=0.581 \mathrm{~cm} / \mathrm{s} \text { (the maximum) }
\end{aligned}
$$

