Q- Two infinite wires run parallel to the z-axis, which points out of the page. One wire carries a current $I_{1}=2 \mathrm{~A}$ and intersects the x-axis at $x=a=3 \mathrm{~cm}$. The second wire carries current $I_{2}=5 \mathrm{~A}$ and intersects the x-axis at $x=-a$. Both currents flow in the $+z$ direction.
(a) Calculate the net magnetic field due to I_{1} and I_{2} at Point A (the origin).
(b) Calculate the net magnetic field due to I_{1} and I_{2} at Point B a distance a above the origin on the y-axis.
(c) Calculate the net magnetic field due to I_{1} and I_{2} at Point C a distance $2 a$ to the right of the origin on the x-axis.
(a) The magnetic field due to long straight wire carrying a current I at a distance r form it is given by

$$
B=\frac{\mu_{0} I}{2 \pi r}
$$

The direction of the magnetic field at a point is given by the right hand rule.

Now here the field at A due to the wire carrying current I_{1} will be

$$
B_{1}=\frac{\mu_{0} I_{1}}{2 \pi a}=\frac{2 * 10^{-7} * 2}{0.03}=1.33 * 10^{-5} \mathrm{~T}
$$

According to right hand rule, the direction of this current is outward and at A the field will be downward means negative y direction and hence

$$
\begin{equation*}
\overrightarrow{\mathrm{B}}_{1}=-1.33 * 10^{-5} \hat{\jmath} \mathrm{~T} \tag{1}
\end{equation*}
$$

The field at A due to the wire carrying current I_{2} will be

$$
B_{2}=\frac{\mu_{0} I_{2}}{2 \pi a}=\frac{2 * 10^{-7} * 5}{0.03}=3.33 * 10^{-5} \mathrm{~T}
$$

According to right hand rule, the direction of this current is outward and at A the field will be upward means positive y direction and hence

$$
\begin{equation*}
\overrightarrow{\mathrm{B}}_{2}=3.33 * 10^{-5} \hat{\mathrm{~J}} \mathrm{~T} \tag{2}
\end{equation*}
$$

Hence the total field at A is given by

$$
\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{B}}_{1}+\overrightarrow{\mathrm{B}}_{2}=\left(-1.33 * 10^{-5}+3.33 * 10^{-5}\right) \hat{\mathrm{j} T}
$$

Hence the field at A is $2.0 * 10^{-5} \mathrm{~T}$ and in positive y direction
(b) Now here the distance of each wire is $r=\sqrt{a^{2}+a^{2}}=a \sqrt{2}$ and hence field at B due to the wire carrying current I_{1} will be

$$
B_{1}=\frac{\mu_{0} I_{1}}{2 \pi a \sqrt{2}}=\frac{2 * 10^{-7} * 2}{0.03 \sqrt{2}}=9.43 * 10^{-6} \mathrm{~T}
$$

According to right hand rule, the direction of this current is outward and at A the field will be making 45° with negative x direction and hence in component form can be written as

$$
\begin{equation*}
\vec{B}_{1}=9.43 * 10^{-6}\left(-\cos 45^{o} \hat{\imath}-\cos 45^{\circ} \hat{\jmath}\right)=-6.67 * 10^{-6}(\hat{\imath}+\hat{\jmath}) \mathrm{T} \tag{3}
\end{equation*}
$$

The field at B due to the wire carrying current I_{2} will be

$$
B_{2}=\frac{\mu_{0} I_{2}}{2 \pi a \sqrt{2}}=\frac{2 * 10^{-7} * 5}{0.03 \sqrt{2}}=2.36 * 10^{-5} \mathrm{~T}
$$

According to right hand rule, the direction of this current is also outward and at B the field will be making 45° with positive y direction and hence

$$
\begin{align*}
\vec{B}_{2}= & 2.36 * 10^{-5}\left(-\sin 45^{\circ} \hat{\imath}+\cos 45^{\circ} \hat{\jmath}\right)= \\
& 1.67 * 10^{-5}(-\hat{\imath}+\hat{\jmath}) \mathrm{T} \quad----(4) \tag{4}
\end{align*}
$$

Hence using equation 3 and 4 total field at B is given by

$$
\vec{B}=\vec{B}_{1}+\vec{B}_{2}=-6.67 * 10^{-6}(\hat{i}+\hat{j})+1.67 * 10^{-5}(-\hat{i}+\hat{j})
$$

Or $\quad \vec{B}=-2.34 * 10^{-5} \hat{i}+1.003 \hat{j}$
(c) The distance between the wire carrying current I_{1} and point C is $\mathrm{r}_{1}=2 \mathrm{a}-\mathrm{a}=\mathrm{a}$ and hence the magnetic field due to this wire at C is given by

$$
B_{1}=\frac{\mu_{0} I_{1}}{2 \pi a}=\frac{2 * 10^{-7} * 2}{0.03}=1.33 * 10^{-6} \mathrm{~T}
$$

According to right hand rule the current is outward and point C is to the right of the wire the field will be upward means to the positive y direction. Hence the field due to this wire is given by

$$
\begin{equation*}
\overrightarrow{\mathrm{B}}_{1}=1.33 * 10^{-5} \hat{\jmath} \mathrm{~T} \tag{5}
\end{equation*}
$$

The distance between the wire carrying current I_{2} and point C is $\mathrm{r}_{2}=2 \mathrm{a}+\mathrm{a}=3 \mathrm{a}$ and hence the magnetic field due to this wire at C is given by

$$
B_{2}=\frac{\mu_{0} I_{1}}{2 \pi a}=\frac{2 * 10^{-7} * 5}{3 * 0.03}=1.11 * 10^{-5} \mathrm{~T}
$$

According to right hand rule the current is outward and point C is to the right of the wire the field will be upward means to the positive y direction. Hence the field due to this wire is given by

$$
\begin{equation*}
\overrightarrow{\mathrm{B}}_{1}=1.11 * 10^{-5} \hat{\jmath} \tag{6}
\end{equation*}
$$

Hence the resultant field at point C due the two wires using equations 5 and 6 is

$$
\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{B}}_{1}+\overrightarrow{\mathrm{B}}_{2}=1.33 * 10^{-5} \hat{\jmath}+10^{-5} \hat{\jmath}=2.44 * 10^{-5} \hat{\jmath} \quad \mathrm{~T}
$$

