Q - An equilateral triangle of side a has a current I in anti-clockwise direction. Find the strength of magnetic field and its direction at one of its vertex.

The magnetic field at a point, due to a current carrying wire of finite length is given by the formula

$$
B=\frac{\mu_{0} I}{4 \pi d}(\sin \alpha-\sin \beta)
$$

Here I is the current through the wire, d is the distance (perpendicular) of the point from the wire and α and β are the angle subtended by the ends of wire at the point P with the perpendicular on the wire

Now to our question

According to Biot-Savart law, magnetic field at any point along the line of the current is zero ($\sin \theta=0$), the field due to the two sides passing through the point P will be zero and only due to the third side.

The perpendicular distance of point P from the third side will be a $\sin 60^{\circ}$
The ends of the thirds side are on different sides thus the angles are α $=30^{\circ}$ and $\beta=-30^{\circ}$.

Thus the field at P is given by

$$
B=\frac{\mu_{0} I}{4 \pi \mathrm{a} \sin 60^{\circ}}\left(\sin 30^{\circ}-\sin \left(-30^{\circ}\right)\right)
$$

Or $\quad B=\frac{\mu_{0} I}{4 \pi a \frac{\sqrt{3}}{2}}\left(\frac{1}{2}-\left(-\frac{1}{2}\right)\right)$
Or $\quad B=\frac{\mu_{0} I}{2 \sqrt{3} \pi a}$
Using right hand rule we can say that the field at point P in to the
 paper.

