Q- (a) Linear charge density of a half ring varies with q as $\lambda=\lambda_{0} \cos \theta$. Find total charge on the ring.
(b) If the linear charge density of a wire of length L depends on the distance x from its one end as $\lambda=\frac{\lambda_{0} x}{L}$, find total charge of the wire.
(a) Consider a very small arc between angle θ and $\theta+\mathrm{d} \theta$ subtending angle $\mathrm{d} \theta$ at the center of the semicircle. The length of this element will be $\mathrm{R} * \mathrm{dq}$ and thus the charge on this element will be

$$
\begin{aligned}
d q & =\lambda R d \theta \\
\text { Or } \quad d q & =\lambda_{0} \cos \theta R d \theta
\end{aligned}
$$

Thus the total charge on the half ring can be calculated by integrating the charge element for $\theta=0$ to $\theta=\pi$ as

$$
q=\int d q=\lambda_{0} R \int_{0}^{\pi} \cos \theta d \theta
$$

Or $\quad q=\lambda_{0} R[\sin \theta]_{0}^{\pi}$
Or $\quad q=\lambda_{0} R[\sin \pi-\sin 0]=0$
(b)

Consider a small length element of length dx at a distance x from the end O .

The charge on this element will be

$$
d q=\lambda d x
$$

Or $\quad d q=\frac{\lambda_{0} x}{L} d x$
Thus the total charge on the wire can be calculated by integrating the charge element for x $=0$ to $x=L$ as

$$
q=\int d q=\frac{\lambda_{0}}{L} \int_{0}^{L} x d x
$$

Or $\quad q=\frac{\lambda_{0}}{L}\left[\frac{x^{2}}{2}\right]_{0}^{L}$
Or $\quad q=\frac{\lambda_{0}}{L}\left[\frac{L^{2}}{2}-0\right]=\frac{\lambda_{0} L}{2}$
(In part b the charge is varying linear and hence average charge density will be $\lambda_{0} / 2$ and thus the total charge will be $\lambda_{0} \mathrm{~L} / 2$)

