Q- Find equivalent resistance between A and B .

As the circuit is symmetrical from A to B and from B to A, the currents are as shown in the figure. If the potential difference between A and B is V than using Kirchhoff's mesh law for ACB we get

$$
\begin{equation*}
V=2 * I_{1}+4 * I_{2} \tag{1}
\end{equation*}
$$

And for mesh ACDB we get

$$
\begin{equation*}
V=2 * I_{1}+6 *\left(I_{1}-I_{2}\right)+2 * I_{1} \tag{2}
\end{equation*}
$$

Or $\quad V=10 * I_{1}-6 * I_{2}$
Solving equations (1) and (2) we get

$$
\mathrm{I}_{2}=4 / 5 \mathrm{I}_{1}
$$

Thus from (1)
$\mathrm{I}_{1}=5 \mathrm{~V} / 26$
And $\quad \mathrm{I}_{2}=4 \mathrm{~V} / 26$
Thus, the total current through the circuit will be $\mathrm{I}_{1}+\mathrm{I}_{2}=9 \mathrm{~V} / 26$
Hence the equivalent resistance of the circuit will be

$$
\mathrm{R}=\mathrm{V} / \mathrm{I}=26 / 9=2.88888 \mathrm{Ohm}
$$

(none of your answer is matching it, but the analysis shows that above result is correct)

