Q- Figure shows four concurrent forces in equilibrium. Find the magnitude and direction of F_{3} and F_{4}.

Resolving the forces in vertical direction
$F_{1 y}=-4000 \mathrm{lb}$
$F_{2 y}=25000 \cos 40^{\circ}=25000^{*} 0.766=19151.11 \mathrm{lb}$
$F_{3 y}=F_{3} \cos 40^{\circ}=F_{3} * 0.766$ and
$F_{4 y}=F_{4} \cos 90^{\circ}=0$
As the forces are balanced in vertical direction we have

$$
F_{1 y}+F_{2 y}+F_{3 y}+F_{4 y}=0
$$

Or $\quad-4000+19151.11+\mathrm{F}_{3} * 0.766+0=0$

Gives $F_{3}=-19778.2 \mathrm{lb}$

Thus the magnitude of F_{3} is 19778.2 lb .

As the sign of this force is negative, it means that the force has a negative component in vertical direction and for that its direction must be away from P.

Now resolving the forces in horizontal direction
$F_{1 x}=F_{1} \sin 90^{\circ}=4000 * 0=0$
$F_{2 x}=25000 \sin 40^{\circ}=25000 * 0.643=16069.7 \mathrm{lb}$
$F_{3 x}=F_{3} \sin 40^{\circ}=19778.2 * 0.643=12713.2 \quad$ and
$F_{4 x}=F_{4} \sin 90^{\circ}=F_{4}$

As the forces are balanced in horizontal direction we have

$$
F_{1 x}+F_{2 x}+F_{3 x}+F_{4 x}=0
$$

Or $\quad 0+16069.7+12713.2+F_{4}=0$

Gives $F_{4}=-28782.9 \mathrm{lb}$

Thus the magnitude of F_{4} is 28782.9 lb . The negative sign shows that the force is in negative x direction and hence towards P.

