Q- Find current through all resistances in the given network.

Let the current in the loops are I_{1} and I_{2} as in the figure and the potential at node A be V.

Using Ohms law, we can write the equations for the current in the three resistors we get (the potential of the grounded portion is zero)
$\begin{aligned} E_{1}-V & =I_{1} R_{1} \\ \text { Or } \quad 4-V & =I_{1} * 4\end{aligned}$
Or $\quad I_{1}=(4-\mathrm{V}) / 4$

$$
\begin{equation*}
E_{2}-V=I_{2} R_{2} \tag{1}
\end{equation*}
$$

Or $\quad 6-V=I_{2} * 2$
Or $\quad \mathrm{I}_{2}=(6-\mathrm{V}) / 2$
And

$$
\begin{equation*}
V-0=\left(I_{1}+I_{2}\right) R_{3} \tag{3}
\end{equation*}
$$

Or $\quad V=8 I_{1}+8 I_{2}$
Substituting the values of currents from equations 1 and 2 in equation 3 we get

$$
V=8 *\left[\frac{4-V}{4}+\frac{6-V}{2}\right]
$$

Gives $V=8-2 V+24-4 V$
Or $\quad V=32 / 7$ volt
Substituting in equation 1 we get

$$
I_{1}=1-(8 / 7)=-1 / 7 A=-0.143 A
$$

And from equation 2 we get

$$
I_{2}=3-(16 / 7)=5 / 7 \mathrm{~A}=0.714 \mathrm{~A}
$$

And hence

$$
\mathrm{I}_{3}=\mathrm{I}_{1}+\mathrm{I}_{2}=-(1 / 7)+(5 / 7)=4 / 7 \mathrm{~A}=0.571 \mathrm{~A}
$$

