Q- Find current through all resistances in the given network.

Let the current in the loops are I_1 and I_2 as in the figure and the potential at node A be V.

Using Ohms law, we can write the equations for the current in the three resistors we get (the potential of the grounded portion is zero)

Or Or	$E_1 - V = I_1 R_1 4 - V = I_1 * 4 I_1 = (4-V)/4$	(1)
Or Or	$E_2 - V = I_2 R_2$ 6 - V = I_2*2 I_2 = (6-V)/2	(2)
اہ مہ ۸		

And

 $V - 0 = (I_1 + I_2)R_3$ Or $V = 8 I_1 + 8 I_2$ -----(3)

Substituting the values of currents from equations 1 and 2 in equation 3 we get

$$V = 8 * \left[\frac{4-V}{4} + \frac{6-V}{2}\right]$$

Gives V = 8 - 2V + 24 - 4VOr V = 32/7 volt

Substituting in equation 1 we get $I_1 = 1 - (8/7) = -1/7 A = -0.143 A$

And from equation 2 we get $I_2 = 3 - (16/7) = 5/7 A = 0.714 A$

And hence

 $I_3 = I_1 + I_2 = -(1/7) + (5/7) = 4/7 A = 0.571 A$