
Q- Find current through all resistances in the given network.

Let the current in the loops are I_1 and I_2 as in the figure and the potential at node A be V.

Using Ohms law we can write the equations for the current in the three resistors we get (the potential of the grounded portion is zero)

	$V - (-E_1) = I_1 R_1$	(E1 is connected with opposite polarity)
Or Or	$V + 10 = I_1 * 4$ $I_1 = (V + 10)/4$	(1)
0î	$I_1 = (V + 10)/4$	(1)
_	$E_2 - V = I_2 R_2$	
Or Or	$12 - V = I_2 * 3$ $I_2 = (12 - V)/3$	(2)
And	$1_2 = (12 - 0)/5$	(2)
	$0 - V = I_3 R_3$	
Or	$I_3 = -V/12$	(3)
And as at node A		
	$I_2 + I_3 - I_1 = 0$	
Substituting the values of currents from equations 1, 2 and 3 in above equation we get		
Sub	$\frac{12-V}{3} - \frac{V}{12} - \frac{V+10}{4} = 0$	is nom equations 1, 2 and 5 in above equation we get
	3 12 4	
Gives $48 - 4V - V - 3V - 30 = 0$		
Or	V = 9/4 = 2.25 volt	
Substituting in equation 1 we get		
	$I_1 = 12.25/4 = 3.0625 \text{ A}$	
And from equation 2 we get		
Anu	$I_2 = (12 - 2.25)/3 = 3.25$	A
And	$I_3 = -2.25/12 = -0.1875$	А
Hence current through R_1 is $I_1 = 3.0625 A$		
Current through R_2 is $I_2 = 3.25 A$		
And current through R_3 is $I_3 = -0.1875 A$		

(Negative means opposite to the direction indicated in the figure)