Q- Find current through all resistances in the given network.

Let the current in the loops are I_{1} and I_{2} as in the figure and the potential at node A be V .
Using Ohms law we can write the equations for the current in the three resistors we get (the potential of the grounded portion is zero)
$V-\left(-E_{1}\right)=I_{1} R_{1} \quad$ (E1 is connected with opposite polarity)
Or $\quad \mathrm{V}+10=\mathrm{I}_{1} * 4$
Or $\quad I_{1}=(V+10) / 4$
$E_{2}-V=I_{2} R_{2}$
Or $\quad 12-\mathrm{V}=\mathrm{I}_{2} * 3$
Or $\quad I_{2}=(12-V) / 3$
And

$$
\begin{equation*}
0-V=I_{3} R_{3} \tag{2}
\end{equation*}
$$

Or $\quad \mathrm{I}_{3}=-\mathrm{V} / 12$
And as at node A

$$
\mathrm{I}_{2}+\mathrm{I}_{3}-\mathrm{I}_{1}=0
$$

Substituting the values of currents from equations 1, 2 and 3 in above equation we get

$$
\frac{12-V}{3}-\frac{V}{12}-\frac{V+10}{4}=0
$$

Gives $\quad 48-4 V-V-3 V-30=0$
Or $\quad V=9 / 4=2.25$ volt
Substituting in equation 1 we get

$$
\mathrm{I}_{1}=12.25 / 4=3.0625 \mathrm{~A}
$$

And from equation 2 we get

$$
\mathrm{I}_{2}=(12-2.25) / 3=3.25 \mathrm{~A}
$$

And $\quad I_{3}=-2.25 / 12=-0.1875 \mathrm{~A}$
Hence current through R_{1} is $I_{1}=3.0625 \mathrm{~A}$
Current through R_{2} is $\mathrm{I}_{2}=3.25 \mathrm{~A}$
And current through R_{3} is $I_{3}=-0.1875 \mathrm{~A}$
(Negative means opposite to the direction indicated in the figure)

