Q- When a pin of mass 0.120 g is dropped from a height of $0.80 \mathrm{~m}, 0.05 \%$ of its energy is converted into a sound pulse with a duration of 0.1 s .
(a) Estimate the range at which the dropped pin can be heard if the minimum audible intensity is $10^{-11} \mathrm{~W} / \mathrm{m}^{2}$.

The energy of the pin just before striking ground is given by loss in its potential energy which is given by

$$
\Delta \mathrm{U}=\mathrm{mg} \mathrm{~h}=\left(0.120 * 10^{-3} \mathrm{~kg}\right) * 9.8 * 0.80=9.408 * 10^{-4} \mathrm{~J}
$$

0.05% of this energy is converted to sound and hence sound energy of the pulse will be

$$
0.05^{*} \Delta \mathrm{U} / 100=5 * 9.408 * 10^{-4} / 100=4.704^{*} 10^{-7} \mathrm{~J}
$$

Hence the power of the pulse is given by

$$
\mathrm{P}=4.704 * 10^{-7} / 0.1=4.704 * 10^{-6} \mathrm{~W}
$$

If the range of this pulse to be heard is r then we have

$$
\begin{aligned}
& I=\frac{P}{4 \pi r^{2}}=\frac{4.704 * 10^{-6}}{12.566^{*} r^{2}}=10^{-11} \\
& \text { Gives } \quad r^{2}=\frac{4.704 * 10^{-6}}{12.566 * 10^{-11}}=3.743 * 10^{4} \\
& \text { Or } \quad r=193.5 m
\end{aligned}
$$

(b) Your result in (a) is much too large in practice because of background noise. If you assume that the intensity must be at least $10^{-8} \mathrm{~W} / \mathrm{m}^{2}$ for the sound to be heard, estimate the range at which the dropped pin can be heard.

In this case If the range of this pulse to be heard is r_{1} then we have

$$
\begin{aligned}
& I=\frac{P}{4 \pi r_{1}^{2}}=\frac{4.704 * 10^{-6}}{12.566^{*} r^{2}}=10^{-8} \\
& \text { Gives } \quad r^{2}=\frac{4.704 * 10^{-6}}{12.566 * 10^{-8}}=37.43 \\
& \text { Or } \quad r=6.12 \mathrm{~m}
\end{aligned}
$$

