For the circuit of Figure
(a) Find the total admittance Y_{T} in polar form.

The circuit contains a resistor $\mathrm{R}=1.2 \Omega$, an inductor of reactance of $\mathrm{XL}=2 \Omega$ and
 a capacitor of reactance 5Ω in parallel. The impedance in the different branches of the parallel circuit are

$$
\begin{array}{lll}
Z_{1}=(1.2+0 j) \Omega=1.2 \angle 0 & \text { gives } Y_{1}=0.833+0 j \\
Z_{2}=(0+2 j) \Omega=2 \angle 90^{\circ} & \text { gives } & Y_{2}=0-0.5 j \\
Z_{3}=(0-5 j) \Omega=5 \angle-90^{\circ} & \text { gives } & Y_{3}=0+0.2 j
\end{array}
$$

Hence the total admittance of the circuit will be

$$
\begin{aligned}
Y=Y_{1} & +Y_{2}+Y_{3}=0.833-0.3 j=\left(0.8333^{2}+0.3^{2}\right)^{1 / 2} \angle \tan ^{-1}(-0.3 / 0.8333) \\
& =\mathbf{0 . 8 9}<\mathbf{- 1 9 . 8 0} \mathbf{\Omega}^{\mathbf{- 1}}
\end{aligned}
$$

(b) Draw the admittance diagram.

The admittance diagram is shown in the figure
(c) Find the value of C in microfarads and L in Henri.

The current in the circuit is

$$
I=3 \sin \left(377 t+60^{\circ}\right)
$$

This gives the value of the angular frequency $\omega=377$ rad. $/ \mathrm{s}$
As the inductive reactance $X_{L}=L \omega=2 \Omega$ we get

$$
\mathrm{L}=\mathrm{X} / / \omega=2 / 377=\mathbf{5 . 3} \mathbf{*} \mathbf{1 0}^{-\mathbf{3}} \mathbf{H}=5.3 \mathrm{mH}
$$

Similarly the capacitive reactance is

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{C}}=1 / \mathrm{C} \omega=5 \Omega \text { we get } \\
& C=\frac{1}{\omega X_{C}}=\frac{1}{377 * 5}=5.3 * 10^{-4} \mathrm{~F}=530 * 10^{-6} \mathrm{~F}=\mathbf{5 3 0} \boldsymbol{\mu} \mathbf{F}
\end{aligned}
$$

