physics<u>helpline</u>

For the circuit of Figure

(a) Find the total admittance Y_T in polar form.

The circuit contains a resistor R = 1.2Ω , an inductor of reactance of XL = 2Ω and a capacitor of reactance 5Ω in parallel.

The impedance in the different branches of the parallel circuit are

$$\begin{split} &Z_1 = (1.2 + 0 \text{ j})\Omega = 1.2 \angle 0 \quad \text{gives} \quad Y_1 = 0.833 + 0 \text{ j} \\ &Z_2 = (0 + 2 \text{ j}) \ \Omega = 2 \angle 90^0 \quad \text{gives} \quad Y_2 = 0 - 0.5 \text{ j} \\ &Z_3 = (0 - 5 \text{ j}) \ \Omega = 5 \angle -90^0 \quad \text{gives} \quad Y_3 = 0 + 0.2 \text{ j} \end{split}$$

Hence the total admittance of the circuit will be

$$Y = Y_1 + Y_2 + Y_3 = 0.833 - 0.3 j = (0.8333^2 + 0.3^2)^{\frac{1}{2}} \angle tan^{-1}(-0.3/0.8333)$$

(b) Draw the admittance diagram.

The admittance diagram is shown in the figure

(c) Find the value of C in microfarads and L in Henri.

The current in the circuit is

$$I = 3 \sin(377t + 60^{\circ})$$

This gives the value of the angular frequency ω = 377 rad./s

As the inductive reactance $X_L = L\omega = 2 \Omega$ we get

L = X_L/
$$\omega$$
 = 2/377 = **5.3*10⁻³ H** = 5.3 mH

Similarly the capacitive reactance is

$$X_{\rm C} = 1/C_{\rm O} = 5 \,\Omega$$
 we get
 $C = \frac{1}{\omega X_{\rm C}} = \frac{1}{377*5} = 5.3 * 10^{-4} F = 530 * 10^{-6} F = 530 \,\mu F$

+ i

 $Y_R = 0.833 \angle 0$

 $Y_T = 0.89 \angle -19.8^0$

 $Y_{C} = 0.2 \angle 90^{0}$

 $Y_L = 0.5 \angle -90^6$

 $Y_C - Y_I$