Q- Find the mesh currents and voltage Vab for given network.

(I)

Let the currents in the different branches are as indicated in figure.
Considering the junction law for nod B we get

$$
\begin{array}{ll}
& \mathrm{I}_{1}-\mathrm{I}_{2}+\mathrm{I}_{3}=0 \\
\text { Or } & \mathrm{I}_{3}=\mathrm{I}_{2}-\mathrm{I}_{1} \tag{1}
\end{array}
$$

Considering mesh ABEFA (clockwise positive) we have

$$
\Sigma \mathrm{E}=\mathrm{E}_{3}-\mathrm{E}_{1}
$$

And $\quad \Sigma \mathrm{IR}=\mathrm{I}_{1} \mathrm{R}_{1}-\mathrm{I}_{3} \mathrm{R}_{3}$
Applying Kirchhoff's law we have

$$
\Sigma \mathrm{E}=\Sigma \mathrm{I} \mathrm{R}
$$

Or $\quad E_{3}-E_{1}=I_{1} R_{1}-I_{3} R_{3}$
Or $\quad 60-25=2 I_{1}-3 I_{3}$
Or $\quad 2 I_{1}-3 I_{3}=35$
Considering mesh BCDEB (clockwise positive) we have

$$
\Sigma \mathrm{E}=\mathrm{E}_{4}-\mathrm{E}_{2}-\mathrm{E}_{3}
$$

And $\quad \Sigma I R=I_{2} R_{2}+I_{3} R_{3}$
Applying Kirchhoff's law we have

$$
\Sigma \mathrm{E}=\Sigma \mathrm{IR}
$$

Or $\quad E_{4}-E_{2}-E_{3}=I_{2} R_{2}+I_{3} R_{3}$
Or
$6-20-60=5 I_{2}+3 I_{3}$
Or $\quad 5 \mathrm{I}_{2}+3 \mathrm{I}_{3}=-74$
Substituting values of I_{3} in equations 2 and 3 in equation 1 we get
$2 \mathrm{I}_{1}-3\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)=35$
Or $\quad 5 I_{1}-3 I_{2}=35$
And $5 I_{2}+3\left(I_{2}-I_{1}\right)=-74$
Or $\quad-3 \mathrm{I}_{1}+8 \mathrm{I}_{2}=-74$

Equation $(2 \mathrm{~A}) * 3+(3 \mathrm{~A}) * 5$ gives

$$
31 I_{2}=-265
$$

Or $\quad I_{2}=-265 / 31=-8.55 A$
Using equation (2A) we have

$$
5 I_{1}-3(-8.55)=35
$$

Gives $\mathbf{I}_{\mathbf{1}}=1.87 \mathrm{~A}$
And $\mathrm{I}_{3}=\mathrm{I}_{2}-\mathrm{I}_{1}=-8.55-1.87=\mathbf{- 1 0 . 4 2} \mathbf{A}$
Now $\mathrm{V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}=$ potential drop across R_{2} and across E_{2}
Or $\quad V_{a b}=I_{2} R_{2}-\mathrm{E}_{2}=-8.55 * 5-(-20)=-22.75 \mathrm{~V}$

