Q- Calculate the voltages V_{1} and V_{2} for the circuit shown in figure.

If the total impedance in the circuit is Z then the current through the circuit is given by using Ohms law as

$$
\mathrm{I}=\mathrm{E} / \mathrm{Z} .
$$

The voltage drop across any element of the circuit is given by

$$
\mathrm{V}_{1}=\mathrm{Z}_{1} * \mathrm{I}_{1}
$$

Now if the elements of the circuit are in series the current through each element will be the same I and hence voltage across any element is given by

$$
\begin{aligned}
& V_{1}=Z_{1} \mathrm{I}=\mathrm{Z}_{1} *(\mathrm{E} / \mathrm{Z}) \\
\text { Or } \quad V_{1} & =\frac{Z_{1} E}{Z}
\end{aligned}
$$

Similarly, the voltage across the second element will be

$$
V_{2}=\frac{Z_{2} E}{Z}
$$

As the whole source voltage is divided to the elements we have

$$
V_{s}=\frac{Z_{1} E}{Z}+\frac{Z_{2} E}{Z}+\frac{Z_{3} E}{z}+\cdots
$$

This is called voltage divider rule.
(a) The source voltage is

$$
E=120 V \angle 20^{\circ}
$$

The total impedance of the circuit

$$
Z=2 k \Omega+6 k \Omega j
$$

In phasor form

$$
Z=\sqrt{(2 k)^{2}+(6 k)^{2}} \angle \tan ^{-1}\left(\frac{6 k}{2 k}\right)=6.325 k \angle 71.57^{0}
$$

Hence voltage across the resistor

$$
V_{1}=\frac{Z_{1} E}{Z}=\frac{(2 k \Omega \angle 0) *\left(120 V \angle 20^{0}\right)}{\left(6.325 k \Omega \angle 71.57^{0}\right)}=\left(\frac{2 k * 120}{6.325 k}\right) \angle(20-71.57)
$$

Or $\quad V_{1}=\mathbf{3 7 . 9 4 5 V} \angle \mathbf{- 5 1 . 5 7}{ }^{\circ}$

And voltage across the inductor

$$
V_{2}=\frac{Z_{2} E}{Z}=\frac{(6 k \Omega \angle 90) *\left(120 V \angle 20^{0}\right)}{\left(6.325 k \Omega \angle 71.57^{0}\right)}=\left(\frac{6 k * 120}{6.325 k}\right) \angle(90+20-71.57)
$$

Or $\quad V_{2}=\mathbf{1 1 3 . 8 3 4} \angle \mathbf{3 8 . 4 3}{ }^{0}$

