Q- A 1.5 kg piston supported on a helical spring vibrates freely with a natural frequency of 3 Hz . When oscillating within an oil filled cylinder the frequency of free oscillation is reduced to 2.90 Hz . Assuming that the damping in the oil filled cylinder is viscous:
(a) Find the stiffness of the helical spring.
[Viscous damping means that the damping force is proportional to the velocity of the body or $\left.\mathrm{F}_{\mathrm{d}}=-\mathrm{c}(\mathrm{dx} / \mathrm{dt})\right]$.

The angular frequency of free natural oscillation of a body of mass $m$ under force constant $K$ is given by

$$
\omega_{n}=\sqrt{\frac{K}{m}}
$$

Here m is the mass of the body and K is the stiffness of the spring.
Now as the frequency and the angular frequency are related by $f=\omega / 2 \pi$, we get the natural frequency of free oscillation as

$$
f=\frac{\omega}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{K}{m}}
$$

Substituting the values, we get

$$
3=\frac{1}{2 * 3.14} \sqrt{\frac{K}{1.5}}
$$

Gives $K=532.42 \mathrm{~N} / \mathrm{m}$
(b) Find the damping ratio when in the oil filled cylinder.

The damping ratio $\zeta$ relates the natural frequency and the frequency with damping as

$$
\omega_{d}=\omega_{n} * \sqrt{1-\zeta^{2}}
$$

Or $\quad f_{d}=f_{n} * \sqrt{1-\zeta^{2}}$
Substituting the values, we get

$$
2.90=3.00 * \sqrt{1-\zeta^{2}}
$$

Or $\quad \sqrt{1-\zeta^{2}}=\frac{2.90}{3.00}$
Or $\quad 1-\zeta^{2}=0.934$
Gives $\zeta=0.257$
As $\zeta<1$, The oscillations are under damped
(c) Find the damping coefficient when in the oil filled cylinder.

The damping coefficient is related to the natural angular frequency as

$$
c=2 m \omega_{n} \zeta=2 m\left(2 \pi f_{n}\right) \zeta=2 * 1.5(2 \pi * 3) * 0.257=14.533 \mathrm{~N} . \mathrm{s} / \mathrm{m}
$$

(d) In the oil filled cylinder, how many oscillations are required for the amplitude to be reduced to $1 / 20$ th of the initial displacement used to excite the system?

The amplitude as a function in the damped oscillation (viscous) is given by the relation $\mathrm{A}(\mathrm{t})=\mathrm{A}_{0} \mathrm{e}^{-(\mathrm{c} / 2 \mathrm{~m}) \mathrm{t}}$
Where $A_{0}$ is the initial amplitude, $b$ is damping constant and $m$ is the mass of the object. Hence substituting the values we have

$$
\frac{\mathrm{A}_{0}}{20}=\mathrm{A}_{0} \mathrm{e}^{-\left(\frac{14.533}{2 * 1.5}\right) \mathrm{t}}
$$

Or

$$
e^{\left(\frac{14.533}{2 * 1.5}\right) t}=20
$$

Gives $\mathrm{e}^{(4.844) \mathrm{t}}=20$
Or $\quad 4.844^{*} \mathrm{t}=\ln 20=2.996$
Or $\quad \mathrm{t}=2.996 / 4.844=0.618 \mathrm{~s}$
Hence the number of oscillations in this time will be $0.618 * f_{d}=0.618 * 2.90=1.792$ oscillations.

