Q- A beam of light with red and blue components of wavelengths 670 nm and 425 nm , respectively, strikes a slab of fused quartz at an incident angle of 30°. On refraction, the different components are separated by an angle of $1.31 \times 10^{-3} \mathrm{rad}$. If the index of refraction of the red light is 1.4925 , what is the index of refraction of the blue light?

Angle of incidence for both rays $i=30^{\circ}$
Let angle of refraction for blue is r_{b}
Angle of dispersion for the two rays

$$
\theta=1.31 * 10^{-3} \text { rad. }=0.07506^{\circ}
$$

Thus, angle of refraction for red is $\mathrm{r}_{\mathrm{b}}=\mathrm{r}_{\mathrm{r}}-\theta$
As the refractive index for red light is $\mu_{r}=1.4925$ using Snell's law we get

$$
\mu_{r}=\frac{\sin i}{\sin r_{r}}
$$

Or $\quad 1.4925=\frac{\sin i}{\sin r_{r}}$

Or $\quad 1.4925=\frac{\sin 30^{0}}{\sin r_{r}}$
Or $\quad \sin r_{r}=0.5 / 1.4925=0.33501$
Gives $r_{r}=19.57305^{\circ}$
Hence the angle of refraction for blue light will be

$$
r_{b}=r_{r}-\theta=19.57305-0.07506=19.49799
$$

hence refractive index for blue light is given by

$$
\begin{aligned}
\mu_{b} & =\frac{\sin i}{\sin r_{b}} \\
\text { Or } \quad \mu_{b} & =\frac{\sin 30^{\circ}}{\sin 19.49799}=1.49802
\end{aligned}
$$

Hence the index of refraction of quartz for blue light is 1.49802 .

