physicshelpline

Q- A source of alternating voltage $e=10\sqrt{2}$ sin ωt is connected to a resistor R = 100 Ω and a capacitor C = 0.5 μF in series.

- (a) Plot impedance Z_T and phase difference between current and voltage θ_T versus frequency for a frequency range of zero to 10 kHz.
- (b) Plot voltage across capacitor $V_{\mathcal{C}}$ versus frequency for the frequency range of part (a)
- (c) Plot voltage across resistor $V_{\scriptscriptstyle R}$ versus frequency for the frequency range of part (a).

The source voltage across the circuit is

$$V = 10 \sqrt{2} \sin \omega t$$

Resistance R = 100 Ω

Or

Capacitance C = $0.5 \mu F$ and

Angular frequency $\omega = 2\pi$ n

(a) Plot $Z_{\rm T}$ and $\theta_{\rm T}$ versus frequency for a frequency range of zero to 10 kHz.

The impedance of the circuit is given by

$$Z = \sqrt{R^2 + X_C^2} = \sqrt{100^2 + \left(\frac{1}{C\omega}\right)^2} = \sqrt{100^2 + \left(\frac{1}{0.5*10^{-6}*2*3.14*n}\right)^2}$$
$$Z = \sqrt{100^2 + \left(\frac{1.01}{n^2}\right)} = \sqrt{10^4 + \left(\frac{1.01*10^{11}}{n^2}\right)}$$

For n = 0, $Z = \infty$; for n = 10 k Hz, Z = 104.95 Ω . The Z-n plot will be given as bellow

The phase difference θ between the voltage and current will depend on the frequency and is given by

$$\theta = tan^{-1} \left(\frac{X_L - X_C}{R} \right) = tan^{-1} \left(\frac{-1}{R * C\omega} \right)$$

Or
$$\theta = tan^{-1} \left(\frac{-1}{100*0.5*10^{-6}*2*3.14*n} \right)$$

Or
$$\theta = tan^{-1} \left(-\frac{3184.7}{n} \right)$$

For n = 0, $\theta = -90^{\circ}$ and for n = 10000, $\theta = -17.67^{\circ}$

The qualitative plot in shown in the figure given below

(b) Plot $V_{\mathcal{C}}$ versus frequency for the frequency range of part (a).

The source voltage across the circuit is

$$V = 10 \sqrt{2} \sin \omega t$$

Thus the effective voltage across the circuit is given by

$$V_{eff} = V_{rms} = \frac{10\sqrt{2}}{\sqrt{2}} = 10 V$$

Hence the current in the circuit is given by

$$I_{eff} = \frac{V_{eff}}{Z} = \frac{10}{\sqrt{100^2 + \left(\frac{1}{C\omega}\right)^2}}$$

And hence the voltage across the capacitor is given by

$$\begin{split} V_C &= I_{eff} * X_C = \frac{10}{\sqrt{100^2 + \left(\frac{1}{C\omega}\right)^2}} * \frac{1}{C\omega} \\ \text{Or} & V_C = \frac{10}{\sqrt{10^4 * (C\omega)^2 + 1}} = \frac{10}{\sqrt{10^4 * (C*2\pi n)^2 + 1}} = \frac{10}{\sqrt{10^{-7} * n^2 + 1}} \\ \text{Or} & V_C = \frac{10}{\sqrt{10^{-7} * n^2 + 1}} & (\pi^2 \approx 10) \end{split}$$

For n = 0, V_C = 10 V and for n = 10000, V_C = 3.015 V

The plot is shown in figure.

(c) Plot $V_{\scriptscriptstyle R}$ versus frequency for the frequency range of part (a).

As above in part b, the current in the circuit is given by

$$I_{eff} = \frac{V_{eff}}{Z} = \frac{10}{\sqrt{100^2 + \left(\frac{1}{G\omega}\right)^2}}$$

The voltage across the resistor R is given by

$$V_R = I_{eff} * R = \frac{10R}{\sqrt{100^2 + \left(\frac{1}{C\omega}\right)^2}}$$
 Or
$$V_R = \frac{10*100}{\sqrt{10^4 + \left(\frac{1}{C\omega}\right)^2}} = \frac{1000}{\sqrt{10^4 + \left(\frac{1}{C*2\pi n}\right)^2}} = \frac{10}{\sqrt{1 + \frac{10^7}{n^2}}}$$
 Or
$$V_R = \frac{10}{\sqrt{1 + \frac{10^7}{n^2}}}$$

$$(\pi^2 \approx 10)$$

For n = 0, V_R = 0 and for n = 10000, V_R = 9.53 V

The plot is shown in the figure bellow

