physicshelpline

Q- A source of alternating voltage $\mathrm{e}=10 \sqrt{ } 2 \sin \omega \mathrm{t}$ is connected to a resistor $\mathrm{R}=100 \Omega$ and a capacitor C $=0.5 \mu \mathrm{~F}$ in series.
(a) Plot impedance Z_{T} and phase difference between current and voltage θ_{T} versus frequency for a frequency range of zero to 10 kHz .
(b) Plot voltage across capacitor V_{C} versus frequency for the frequency range of part (a)
(c) Plot voltage across resistor V_{R} versus frequency for the frequency range of part (a).

The source voltage across the circuit is

$$
V=10 \sqrt{ } 2 \sin \omega t
$$

Resistance $\mathrm{R}=100 \Omega$
Capacitance $\mathrm{C}=0.5 \mu \mathrm{~F}$ and
Angular frequency $\omega=2 \pi \mathrm{n}$
(a) Plot Z_{T} and θ_{T} versus frequency for a frequency range of zero to 10 kHz .
The impedance of the circuit is given by

$$
\begin{aligned}
Z & =\sqrt{R^{2}+X_{C}{ }^{2}}=\sqrt{100^{2}+\left(\frac{1}{C \omega}\right)^{2}}=\sqrt{100^{2}+\left(\frac{1}{0.5 * 10^{-6} * 2 * 3.14 * n}\right)^{2}} \\
\text { Or } \quad Z & =\sqrt{100^{2}+\left(\frac{1.01}{n^{2}}\right)}=\sqrt{10^{4}+\left(\frac{1.01 * 10^{11}}{n^{2}}\right)}
\end{aligned}
$$

For $\mathrm{n}=0, \mathrm{Z}=\infty$; for $\mathrm{n}=10 \mathrm{k} \mathrm{Hz}, \mathrm{Z}=104.95 \Omega$. The $\mathrm{Z}-\mathrm{n}$ plot will be given as bellow

The phase difference θ between the voltage and current will depend on the frequency and is given by

$$
\theta=\tan ^{-1}\left(\frac{x_{L}-x_{C}}{R}\right)=\tan ^{-1}\left(\frac{-1}{R * C \omega}\right)
$$

Or

$$
\left.\begin{array}{ll}
\text { Or } & \theta=\tan ^{-1}\left(\frac{-1}{100 * 0.5 * 10^{-6} * 2 * 3.14 * n}\right.
\end{array}\right)
$$

physicshelpline

For $\mathrm{n}=0, \theta=-90^{\circ}$ and for $\mathrm{n}=10000, \theta=-17.67^{\circ}$
The qualitative plot in shown in the figure given below

(b) Plot V_{C} versus frequency for the frequency range of part (a).

The source voltage across the circuit is

$$
V=10 \sqrt{ } 2 \sin \omega t
$$

Thus the effective voltage across the circuit is given by

$$
V_{e f f}=V_{r m s}=\frac{10 \sqrt{2}}{\sqrt{2}}=10 \mathrm{~V}
$$

Hence the current in the circuit is given by

$$
I_{e f f}=\frac{V_{e f f}}{Z}=\frac{10}{\sqrt{100^{2}+\left(\frac{1}{C \omega}\right)^{2}}}
$$

And hence the voltage across the capacitor is given by

$$
V_{C}=I_{e f f} * X_{C}=\frac{10}{\sqrt{100^{2}+\left(\frac{1}{C \omega}\right)^{2}}} * \frac{1}{C \omega}
$$

Or $\quad V_{C}=\frac{10}{\sqrt{10^{4} *(C \omega)^{2}+1}}=\frac{10}{\sqrt{10^{4} *(C * 2 \pi n)^{2}+1}}=\frac{10}{\sqrt{10^{-7} * n^{2}+1}}$
Or $\quad V_{C}=\frac{10}{\sqrt{10^{-7} * n^{2}+1}}$

$$
\left(\pi^{2} \approx 10\right)
$$

For $\mathrm{n}=0, \mathrm{~V}_{\mathrm{C}}=10 \mathrm{~V}$ and for $\mathrm{n}=10000, \mathrm{~V}_{\mathrm{C}}=3.015 \mathrm{~V}$

The plot is shown in figure.

(c) Plot V_{R} versus frequency for the frequency range of part (a).

As above in part b , the current in the circuit is given by

$$
I_{e f f}=\frac{V_{e f f}}{Z}=\frac{10}{\sqrt{100^{2}+\left(\frac{1}{C \omega}\right)^{2}}}
$$

The voltage across the resistor R is given by

$$
V_{R}=I_{e f f} * R=\frac{10 R}{\sqrt{100^{2}+\left(\frac{1}{C \omega}\right)^{2}}}
$$

Or $\quad V_{R}=\frac{10 * 100}{\sqrt{10^{4}+\left(\frac{1}{C \omega}\right)^{2}}}=\frac{1000}{\sqrt{10^{4}+\left(\frac{1}{C * 2 \pi n}\right)^{2}}}=\frac{10}{\sqrt{1+\frac{10^{7}}{n^{2}}}}$
Or $\quad V_{R}=\frac{10}{\sqrt{1+\frac{10^{7}}{n^{2}}}}$

$$
\left(\pi^{2} \approx 10\right)
$$

For $\mathrm{n}=0, \mathrm{~V}_{\mathrm{R}}=0$ and for $\mathrm{n}=10000, \mathrm{~V}_{\mathrm{R}}=9.53 \mathrm{~V}$
The plot is shown in the figure bellow

