Q. A point charge Q is on the axis of a short cylinder at its center. The diameter of the cylinder is equal to its length L (Fig.). What is the total flux through the curved sides of the cylinder?

The flux coming out of a point charge Q is $\frac{Q}{\epsilon_{0}}$ and uniformly distributed in all directions. Thus the total flux through the whole surface of the cylinder is $\frac{Q}{\epsilon_{0}}$

Now to calculate the flux through a plane surface of the cylinder, we may consider it to be formed by number of thin concentric rings. Consider a thin ring of radius r and width $d r$ as in diagram. The distance of any point on the ring from the charge Q will be given by $\sqrt{R_{0}^{2}+r^{2}}$ and hence the magnitude of the infinitesimally small field dE at ring is given by

$$
d E=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{Q}{R_{0}^{2}+r^{2}}\right)
$$

The component of this field parallel to the axis of cylinder and normal to the plane surface of the cylinder is given by

$$
\begin{aligned}
& d E_{x}=d E * \cos \theta \\
& \text { Or } \\
& d E_{x}=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{Q}{R_{0}^{2}+r^{2}}\right) * \frac{R_{0}}{\sqrt{R_{0}^{2}+r^{2}}} \\
& \text { Or } \\
& d E_{\chi}=\frac{1}{4 \pi \epsilon_{0}}\left[\frac{Q R_{0}}{\left(R_{0}^{2}+r^{2}\right)^{\frac{3}{2}}}\right]
\end{aligned}
$$

Hence the flux through this ring surface is given by the product of the component of the field normal to the surface and surface area of the ring, thus

$$
\begin{aligned}
d \emptyset & =d E_{x} * 2 \pi r d r=\frac{1}{4 \pi \epsilon_{0}}\left[\frac{Q R_{0}}{\left(R_{0}^{2}+r^{2}\right)^{\frac{3}{2}}}\right] * 2 \pi r d r \\
\text { Or } \quad d \emptyset & =\frac{1}{2 \epsilon_{0}}\left[\frac{Q R_{0} r d r}{\left(R_{0}^{2}+r^{2}\right)^{\frac{3}{2}}}\right]
\end{aligned}
$$

Thus the total flux through the end plane surface of the cylinder is given by integrating above equation with proper limits as

$$
\emptyset=\int d \emptyset=\frac{Q R_{0}}{2 \epsilon_{0}} \int_{0}^{R_{0}} \frac{r d r}{\left(R_{0}^{2}+r^{2}\right)^{\frac{3}{2}}}
$$

Now substituting

$$
R_{0}^{2}+r^{2}=u^{2}
$$

Differentiating we get

$$
2 r d r=2 u d u
$$

Or $\quad r d r=u d u$
For $\mathrm{r}=0 ; \mathrm{u}=\mathrm{R}_{0} \quad$ and for $\mathrm{r}=\mathrm{R}_{0} ; \mathrm{u}=\sqrt{2} R_{0}$
Thus the equation above reduces to

$$
\emptyset=\frac{Q R_{0}}{2 \epsilon_{0}} \int_{R_{0}}^{\sqrt{2} R_{0}} \frac{u d u}{u^{3}}
$$

Or

$$
\begin{array}{ll}
\text { Or } & \emptyset=\frac{Q R_{0}}{2 \epsilon_{0}} \int_{R_{0}}^{\sqrt{2} R_{0}} \frac{d u}{u^{2}} \\
\text { Or } & \emptyset=\frac{Q R_{0}}{2 \epsilon_{0}}\left[-\frac{1}{u}\right]_{R_{0}}^{\sqrt{2} R_{0}}
\end{array}
$$

Gives $\emptyset=\frac{Q R_{0}}{2 \epsilon_{0}}\left[\frac{1}{R_{0}}-\frac{1}{\sqrt{2} R_{0}}\right]$
Or $\quad \varnothing=\frac{(\sqrt{2}-1) Q}{2 \sqrt{2} \epsilon_{0}}$
Now as there are two such plane surfaces and hence the flux through the curved surface is given by

$$
\emptyset_{\text {curved }}=\frac{Q}{\epsilon_{0}}-2 \emptyset
$$

Or
$\emptyset_{\text {curved }}=\frac{Q}{\epsilon_{0}}-2 \frac{(\sqrt{2}-1) Q}{2 \sqrt{2} \epsilon_{0}}$
Or $\quad \emptyset_{\text {curved }}=\frac{Q}{\epsilon_{0}}\left(1-\frac{(\sqrt{2}-1)}{\sqrt{2}}\right)$
Or

$$
\emptyset_{\text {curved }}=\frac{Q}{\sqrt{2} \epsilon_{0}}
$$

