Q- A body (weight 3000N) is supported by a bracket through a vertical cable. The bracket is composed of a horizontal bar and an inclined bar, both are rigidly fastened to the wall. Neglecting the weight of the bars and the cable, determine the magnitude of the reaction R_{1} exerted by the lower fixture on the horizontal bar.

Let the tension in the inclined bar is T then resolving it horizontally and vertically we get the vertical component is $\mathrm{T} \cos \theta$ which balances the weight of the body i.e.

$$
\begin{equation*}
\mathrm{T} \cos \theta=\mathrm{W} \tag{1}
\end{equation*}
$$

And the horizontal component of the tension in the bar is balanced by the reaction of the lower fixture R_{1} hence

$$
\begin{equation*}
\mathrm{T} \sin \theta=\mathrm{R}_{1} \tag{2}
\end{equation*}
$$

Dividing (2) by (1) we get

$$
\begin{equation*}
\tan \theta=\mathrm{R}_{1} / \mathrm{W} \tag{3}
\end{equation*}
$$

Now we can get the value of $\tan \theta$ from the right-angled triangle from by the cable as

$$
\tan \theta=6 / 12=0.5
$$

Substituting the values in equation (3) we get

$$
0.5=\mathrm{R}_{1} / 3000
$$

Gives $\mathrm{R}_{1}=3000 * 0.5=1500 \mathrm{~N}$

