physicshelpline

Q- (a) Draw the free-body diagram of the link at B. (b) if the spring has a stiffness of $k=800 \mathrm{~N} / \mathrm{m}$ and an unstretched length of 100 mm , determine the tension in cables $B C$ and $B D$ when the spring is held in the position shown.

Answer:
(a) The free body diagram of the link at B is shown in the figure bellow.
(b) The extension in the spring is
$\Delta \mathrm{l}=500-100=400 \mathrm{~mm}=0.4 \mathrm{~m}$
hence tension in the spring is given by
$F=K \Delta I=800 * 0.4=320 \mathrm{~N}$

Now the geometry of the diagram shows that the force Fc is making an angle

$$
\tan ^{-1}(400 / 400)=45^{\circ}
$$

and the force F_{D} is making an angle
$\tan ^{-1}(300 / 400)=36.9^{0}$ with the direction opposite to the force F

Now resolving the forces Fc and FD in the direction perpendicular and along the direction of F we have for equilibrium of point B in the direction perpendicular to F
$F C \sin 45^{\circ}-F_{D} \sin 36.9^{\circ}=0$
Or $\quad \mathrm{Fc}^{*} 0.707=\mathrm{FD}_{\mathrm{D}}{ }^{*} 0.6$
Or $\quad \mathrm{Fc}=0.849 \mathrm{FD}$

Considering equilibrium of point B along the spring force F we have

$$
F C^{*} \cos 45^{\circ}+F_{D} * \cos 36.9^{\circ}-F=0
$$

Or $\quad \mathrm{Fc}^{*} 0.707+\mathrm{F}_{\mathrm{D}} * 0.8-320=0$
Or $0.849 * \mathrm{~F}_{\mathrm{D}} * 0.707+0.8 \mathrm{~F}_{\mathrm{D}}=320 \quad$ \{using equation 1 \}

Gives $F_{D}=228.57 \mathrm{~N}$

And

$$
\text { Fc }=0.849 * F_{D}=194.05 \mathrm{~N}
$$

