physicshelpline

Q- A disk accelerates constantly from rest. After 8 s , it has made 3 revolutions.
(a) What is the angular acceleration of the disk?
(b) What is the angular velocity of the disk at $t=8 \mathrm{~s}$?
(c) If the radius of the disk is 50 cm , what is the linear velocity of a point on the rim at time $t=$ 8 s?

The quantities of rotational dynamics are similar to the particle dynamics the main difference is that the displacement of the translation s ($\operatorname{rr} x$) is replaced by the angular displacement q, hence the three equations of uniformly accelerated motion can be written as

$$
\begin{align*}
& \omega=\omega_{0}+\alpha t \\
& \text {------------------- (1) } \tag{1}\\
& \theta=\omega_{0} t+\frac{1}{2} \alpha t^{2} \tag{2}\\
& \omega^{2}=\omega_{0}{ }^{2}+2 \alpha \theta \\
& \text { [} \mathrm{v}=\mathrm{u}+\mathrm{at}] \\
& \text { [s } \left.=u t+1 / 2 a^{2}\right] \text { and } \\
& {\left[v^{2}=u^{2}+2 a s\right]}
\end{align*}
$$

Solution:

Here initial angular velocity of the disk
Time interval
And angular displacement

$$
\omega_{0}=0
$$

$$
\mathrm{t}=8 \mathrm{~s}
$$

$$
\mathrm{q}=3 \mathrm{rev}=3 * 2 \pi=6 \pi \text { radians }
$$

(a) $a=$?

Using the second equation we get

$$
\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}
$$

Or $\quad 6 \pi=0 * 8+\frac{1}{2} \alpha 8^{2}$
Gives $\mathrm{a}=3 \pi / 16$ radians $/ \mathrm{s}^{2}=0.59 \mathrm{rad} / \mathrm{s}^{2}$
(b) The angular velocity of the wheel at $\mathrm{t}=8 \mathrm{sec}$ is given by using first equation as $\omega=\omega_{0}+\alpha t$

Or $\omega=0+(0.59) * 8=4.71 \mathrm{rad} / \mathrm{s}$
(c) The linear tangential speed of a particle in circular motion is given by $v=\omega^{*} r$

Here r is the radius of the circular motion of the point.
Thus at $t=8 \mathrm{~s}$ the linear speed of the particle is given by

$$
v=4.71 * 50=235.62 \mathrm{~cm} / \mathrm{s}=2.36 \mathrm{~m} / \mathrm{s}
$$

