Q- Write the mesh equations for the network and solve for the loop currents.

The currents in different branches are indicated in the figure.
Applying current rule
At node B , the current form B to M will be $\mathrm{I}_{1}-\mathrm{I}_{2}$

At node D , the current form D to M will be $\mathrm{I}_{2}-\mathrm{I}_{3}$
At node F , the current form F to M will be $\mathrm{I}_{3}-\mathrm{I}_{4}$
At node M , the current form M to H will be $\mathrm{I}_{1}-\mathrm{I}_{2}+\mathrm{I}_{2}-\mathrm{I}_{3}+\mathrm{I}_{3}-\mathrm{I}_{4}=\mathrm{I}_{1}-\mathrm{I}_{4}$
Now applying loop rule
For mesh ABMH we get (clockwise positive)

$$
\Sigma \mathrm{E}=\Sigma \mathrm{IR}
$$

Or $\quad 6=6.8 \mathrm{k} \mathrm{I}_{1}+4.7 \mathrm{k}\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)+2.2 \mathrm{k}\left(\mathrm{I}_{1}-\mathrm{I}_{4}\right)$
Or $\quad 13.7 \mathrm{k}_{1}-4.7 \mathrm{k}_{2}-2.2 \mathrm{k} \mathrm{I}_{4}=6$

For mesh BCDM we get (clockwise positive)

$$
\Sigma \mathrm{E}=\Sigma \mathrm{IR}
$$

Or $\quad-6=2.7 \mathrm{k} \mathrm{I}_{2}+8.2 \mathrm{k}\left(\mathrm{I}_{2}-\mathrm{I}_{3}\right)-4.7 \mathrm{k}\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)$
Or $\quad-4.7 \mathrm{k} \mathrm{I}_{1}+15.6 \mathrm{k}_{2}-8.2 \mathrm{k} \mathrm{I}_{3}=-6$
Or $\quad 4.7 \mathrm{k} \mathrm{I}_{1}-15.6 \mathrm{k}_{2}+8.2 \mathrm{k}_{3}=6$

For mesh DEFM we get (clockwise positive)
$\Sigma \mathrm{E}=\Sigma \mathrm{IR}$
Or
$-9=1.1 \mathrm{k} \mathrm{I}_{3}+22 \mathrm{k}\left(\mathrm{I}_{3}-\mathrm{I}_{4}\right)-8.2 \mathrm{k}\left(\mathrm{I}_{2}-\mathrm{I}_{3}\right)$
Or $\quad-8.2 \mathrm{k}_{2}+31.3 \mathrm{k}_{3}-22 \mathrm{k} \mathrm{I}_{4}=-9$
Or $\quad 8.2 \mathrm{k} \mathrm{I}_{2}-31.3 \mathrm{k}_{3}+22 \mathrm{k} \mathrm{I}_{4}=9$

And for mesh HMFG we get (clockwise positive)

$$
\Sigma \mathrm{E}=\Sigma \mathrm{IR}
$$

Or
$5=1.2 \mathrm{k}_{4}-2.2 \mathrm{k}\left(\mathrm{I}_{1}-\mathrm{I}_{4}\right)-22 \mathrm{k}\left(\mathrm{I}_{3}-\mathrm{I}_{4}\right)$
Or $\quad-2.2 \mathrm{k}_{1}-22 \mathrm{k} \mathrm{I}_{3}+25.4 \mathrm{k}_{4}=5$
Or $\quad 2.2 \mathrm{k} \mathrm{I}_{1}+22 \mathrm{k} \mathrm{I}_{3}-25.4 \mathrm{k} \mathrm{I}_{4}=-5$

Hence the equations to be solved are
$13.7 \mathrm{k}_{1}-4.7 \mathrm{k}_{2}-2.2 \mathrm{k} \mathrm{I}_{4}=6$
$4.7 \mathrm{k}_{1}-15.6 \mathrm{k}_{2}+8.2 \mathrm{k} \mathrm{I}_{3}=6$
$8.2 \mathrm{k}_{2}-31.3 \mathrm{k}_{3}+22 \mathrm{k} \mathrm{I}_{4}=9$
$2.2 \mathrm{k}_{1}+22 \mathrm{k}_{3}-25.4 \mathrm{k}_{4}=-5$
Using http://home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/SysEq.htm
Gives

$$
\begin{aligned}
& \mathrm{I}_{1}=0.032 \mathrm{~mA} \\
& \mathrm{I}_{2}=-0.884 \mathrm{~mA} \\
& \mathrm{I}_{3}=-0.968 \mathrm{~mA} \\
& \mathrm{I}_{4}=-0.639 \mathrm{~mA}
\end{aligned}
$$

(negative sign means that the direction of the current is opposite to that indicated in the circuit diagram.)

