Q- A 1000 kg car traveling east at 25 mph gets rear-ended hit by a truck weighing 1500 kg also moving east. After collision the vehicles lock bumpers and continue moving east at 40 mph .
(a) What was the original speed of the truck

Mass of the car

$$
\begin{aligned}
& \mathrm{m}_{1}=1000 \mathrm{~kg} \\
& \mathrm{v}_{1}=25 \mathrm{mph} \\
& \mathrm{~m}_{2}=1500 \mathrm{~kg}
\end{aligned}
$$

Velocity of the car
Mass of the truck
Velocity of the truck $\mathrm{V}_{2}=$?
Velocity of combined mass after collision $\mathrm{v}=40 \mathrm{mph}$

The collision may be elastic or inelastic as there is no external force during the short time of impact, momentum of the system remains conserved and hence applying law of conservation of momentum (the direction is the same) we have

Initial momentum of the system $=$ final momentum of the system
Or $\quad m_{1} v_{1}+m_{2} v_{2}=\left(m_{1}+m_{2}\right) v$
Or $\quad v_{2}=\left[\left(m_{1}+m_{2}\right) v-m_{1} v_{1}\right] / m_{2}$

$$
=[2500 * 40-1000 * 25] / 1500=50 \mathrm{mph}=50 * 0.4470 \mathrm{~m} / \mathrm{s}=22.35 \mathrm{~m} / \mathrm{s}
$$

[$1 \mathrm{mph}=0.4470 \mathrm{~m} / \mathrm{s}$]
Answer: the speed of the truck before collision is $22.35 \mathrm{~m} / \mathrm{s}$.
(b) How much kinetic energy of the system lost during this collision?

The loss of kinetic energy of the system is the initial KE - final KE
Or Loss of $K E=(K E$ of the car $+K E$ of the truck) $-K E$ of the combined mass after collision
Or $\quad \Delta K E=\left(\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}\right)-\frac{1}{2}\left(m_{1}+m_{2}\right) v^{2}$
Or $\Delta K E=[(0.5 * 1000 * 625+0.5 * 1500 * 2500)-0.5 * 2500 * 1600] *(0.4470)^{2} \quad(\mathrm{mph}$ to $\mathrm{m} / \mathrm{s})$
Gives $\Delta K E=[(312500+1875000)-2000000] *(0.4470)^{2}=37464.2 J$
(c) If the time of collision is $t=0.05 \mathrm{~s}$, what is the average force experienced by the car during collision?

According to Newton's second law of motion the rate of change of momentum is equal to the force applied hence

$$
F=\frac{\Delta P}{\Delta t}
$$

The average force experienced by the car is given by

$$
F_{1}=\frac{\Delta P_{1}}{\Delta t}=\frac{m_{1} v-m_{1} v_{1}}{\Delta t}=\frac{1000(40-25) * 0.4470}{0.05}=134100 \mathrm{~N}
$$

Answer: the average force experienced by the car will be 134100 N

