physicshelpline

Q- A circular steel plate of radius 0.10 m is cooled from $350^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$. By what percentage does the plate's area decrease?
(Coefficient of linear expansion of steel $\alpha=1.2 * 10^{-5} /{ }^{\circ} \mathrm{C}$)

With cooling the radius of the plate decreases linearly and hence the change in the radius is given by

$$
\Delta R=\alpha * R * \Delta T
$$

Radius of the plate $R=0.10 \mathrm{~m}$
Increase in temperature $\Delta \mathrm{T}=20-350=-330^{\circ} \mathrm{C}$
Coefficient of linear expansion of steel $\alpha=1.2 * 10^{-5} /{ }^{\circ} \mathrm{C}$
Thus $\Delta R=1.2 * 10^{-5} * 0.10 *(-330)=-3.96 * 10^{-4} \mathrm{~m}$

Now the initial area of the plate

$$
A=\pi R^{2}
$$

With decrease in radius the area becomes

$$
A^{\prime}=\pi(R-\Delta R)^{2}
$$

Thus, decrease in area will be given by

$$
A-A^{\prime}=\pi\left[R^{2}-(R-\Delta R)^{2}\right]
$$

Or $\quad \Delta A=\pi\left[R^{2}-\left(R^{2}-2 R * \Delta R+\Delta R^{2}\right)\right]$
Or $\quad \Delta A=\pi\left[R^{2}-R^{2}+2 R * \Delta R-\Delta R^{2}\right]$
Or $\quad \Delta A=2 \pi R * \Delta R$
[as $\Delta R \ll \mathrm{R} ; \Delta R^{2} \lll<\mathrm{R}^{2}$ and hence neglecting as compared to other quantities]

Thus the \% change in the area of the plate will be given by

$$
p=\frac{\Delta A}{A} * 100 \%=\frac{2 \pi R * \Delta R}{\pi R^{2}} \%=\frac{2 * \Delta R}{R} \%
$$

Substituting the values, we get

$$
p=\frac{2 * 3.96 * 10^{-4}}{0.10}=7.92 * 10^{-3} \%
$$

Hence the percentage change in the area of the plate will be $7.92^{*} 10^{-3} \%$

