Q- A room is filled with saturated moist air at $30^{\circ} \mathrm{C}$ and a total pressure of 100 kPa . If the mass of dry air in the room is 100 kg , what is the mass of water vapours in the room?

The water vapours in air behaves as ideal gas and therefore we may consider the moist air as a mixture of two ideal gases, where total pressure is the sum of the pressure exerted by the components individually.

The saturated vapor pressure is a constant at a given temperature and is measured experimentally. We have tables for SVP at different temperatures.

According to the table the SVP at $30^{\circ} \mathrm{C}$ is 31.7 mm of mercury which is equal to 1333 Pa . So, the pressure exerted by the air is $100-1.333=98.667 \mathrm{KPa}$.

Using ideal gas equation $P V=n R T=(m / M) R T$ (m is the mass of gas and M is molar mass) the volume V of the gas is given as

$$
V=(m / M)(R T / P)=(100000 / 29)(8.31 \times 303) / 98667=88 \mathrm{~m}^{3}
$$

So now if the mass of water vapor is m^{\prime} then using the gas equation

$$
\begin{aligned}
& P^{\prime} V=\left(m^{\prime} / M^{\prime}\right) R T \\
& m^{\prime} / M^{\prime}=P^{\prime} V / R T=1333 * 88 /(8.31 \times 303)=46.6 \mathrm{~mol}
\end{aligned}
$$

Therefore, mass of water vapor

$$
\mathrm{m}^{\prime}=46.6 \times 18=838.8 \mathrm{gm}=0.8388 \mathrm{~kg} .
$$

