Q- A shall is fired from a hill of height ' h ' at an angle of 45°. What is the magnitude of its velocity of projection v as a function of its horizontal distance x covered on ground, acceleration due to gravity g and height h ?

The height of the hill is h and let the velocity of a If g is the acceleration due to gravity than the horizontal distance x covered from the point of projection is given by using the equation of of the projectile as

$$
\left[y=x \tan \theta-\frac{g x^{2}}{2 v^{2} \cos ^{2} \theta}\right]
$$

rock is v .
trajectory

Here taking point of projection as the origin we get

$$
-h=x \tan 45^{0}-\frac{g x^{2}}{2 v^{2} \cos ^{2} 45^{0}}
$$

Or $\quad-h=x-\frac{g x^{2}}{v^{2}}$
$\left[\tan 45^{\circ}=1: \cos 45^{\circ}=1 / \sqrt{ } 2\right]$
Or $\quad \frac{g x^{2}}{v^{2}}=h+x$
Or $\quad v^{2}=\frac{g x^{2}}{h+x}$

Gives $\quad v=\sqrt{\frac{g x^{2}}{h+x}}$

