Q- Figure bellow is the snapshot graph at $\mathrm{t}=0$ of two waves approaching each other at $1.0 \mathrm{~m} / \mathrm{s}$. Draw six snapshot graphs showing the string at 1 s intervals from $t=1 \mathrm{~s}$ to $\mathrm{t}=6 \mathrm{~s}$.

At $\mathrm{t}=1 \mathrm{~s}$

At $\mathrm{t}=2 \mathrm{~s}$

D(cm)

At $\mathrm{t}=3 \mathrm{~s}$
D(cm)

At $\mathrm{t}=4 \mathrm{~s}$
D(cm)

At $t=1 \mathrm{~s}$
Both wave pulses are moving with a velocity one m / s towards each other and so that in 1 second each will cover 1 m towards each other and the graph will be as shown.

At $\mathrm{t}=2 \mathrm{~s}$
The waves have moved by 2 m the outer parts of the pulses remain same but the inner parts of the waves overlapped and wave displacement D for the inner parts will subtracted (+ and -) and hence the resultant shape is in figure.

At $\mathrm{t}=3 \mathrm{sec}$
The waves have moved by 3 m the total overlapping of waves takes place. Thus wave displacements D for both equal in magnitude but opposite in direction at every point (dotted lines) and hence the resultant D will be zero at all points.

At $\mathrm{t}=4 \mathrm{~s}$
Both wave pulses further move by 1 m away from each other and now their rare halves will overlap and the resulting D will be shown as in figure.

physicshelpline

At $t=5 \mathrm{~s}$

At $\mathrm{t}=5 \mathrm{~s}$
The waves have moved further by 1 m the whole pulses have just crossed each other and hence resultant shape is in figure.

At $\mathrm{t}=6 \mathrm{sec}$
The waves have moved further by 1 m and the wave pulses are completely away from each by a distance of 2 m and the wave displacements D can be shown as in figure.

