Q- Air enters the compressor of a gas turbine plant (operating at steady state) at ambient conditions of 1 bar, $25^{\circ} \mathrm{C}$ with low velocity and exits at 10 bar, $350^{\circ} \mathrm{C}$ with a velocity of $90 \mathrm{~m} / \mathrm{s}$. The compressor is cooled at a rate of $1500 \mathrm{~kJ} / \mathrm{min}$ and the power input to the device is 250 kW . Determine the mass flow rate of air through the compressor. Also determine the area A of the exit duct.

At input

The pressure of air

$$
\begin{aligned}
& \mathrm{P}_{1}=1 \mathrm{bar}=10^{5} \mathrm{~Pa} \\
& \mathrm{~T}_{1}=25+273=298 \mathrm{~K}
\end{aligned}
$$

Temperature
Rate of heat taken out in cooling $r_{1}=1500 \mathrm{KJ} / \mathrm{min}=1500 / 60=25 \mathrm{KW}$
Power input

$$
r_{2}=250 \mathrm{KW}
$$

At exit
The pressure of air

$$
\mathrm{P}_{2}=10 \mathrm{bar}=10^{6} \mathrm{~Pa}
$$

Temperature
$\mathrm{T}_{2}=350+273=623 \mathrm{~K}$
Velocity of the air at exit

$$
\mathrm{v}=90 \mathrm{~m} / \mathrm{s}
$$

As the type of process is not given it will be easy to take energy considerations.

If we consider a controlled volume of air in the compressor, and the steady state then the total change of internal energy inside the compressor will be zero and we can write

$$
\begin{equation*}
\mathrm{H}_{\text {in }}-\mathrm{H}_{\text {out }}+\mathrm{W}_{\text {in }}-\mathrm{Q}_{\text {out }}-\mathrm{KE}=0 \tag{1}
\end{equation*}
$$

Here
$H_{\text {in }}=$ Enthalpy (or heat content) entering the compressor with input air.
$\mathrm{H}_{\text {out }}=$ Enthalpy coming out of the compressor with output air.
$\mathrm{W}_{\text {in }}=$ Work going in as the power input.
$Q_{o u t}=$ Heat being given out in cooling, and
$K E=$ Kinetic energy acquired by air.

Let $\mathrm{m} \mathbf{~ k g}$ of the air flows through the compressor per second.
As the enthalpy is given by

$$
H=U+P V=n * C v^{*} T+n R T \quad[P V=n R T]
$$

Or $\quad H=n(C v+R) T=n C p T$
Here Cv and Cp are the molar specific heats of air at constant volume and constant pressure respectively

Thus the input and output enthalpy is given by

$$
\begin{aligned}
& \mathrm{H}_{\text {in }}=\mathrm{mCp} \mathrm{~T}_{1}=\mathrm{m}\left(\mathrm{kgS}^{-1}\right) * 1.012\left(\mathrm{~kJ} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~K}^{-1}\right) * 298 \mathrm{~K}=\mathrm{m} * 301.6 \mathrm{KW} \\
& \mathrm{H}_{\text {out }}=\mathrm{mCp}_{2}=\mathrm{m}\left(\mathrm{kgS}^{-1}\right) * 1.012\left(\mathrm{~kJ} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~K}^{-1}\right) * 623 \mathrm{~K}=\mathrm{m} * 630.5 \mathrm{KW}
\end{aligned}
$$

And the kinetic energy of outgoing air will be

$$
\mathrm{KE}=1 / 2 \mathrm{mv}^{2}=0.5^{*} \mathrm{~m} * 90^{2}=\mathrm{m} * 4050 \mathrm{~W}=\mathrm{m} * 4.05 \mathrm{KW}
$$

Given Win $=250 \mathrm{KW}$
And Qout $=25 \mathrm{KW}$

Substituting all data in equation (1) we get

$$
\mathrm{H}_{\text {in }}-\mathrm{H}_{\text {out }}+\mathrm{W}_{\text {in }}-\mathrm{Q}_{\text {out }}-K E=0
$$

Or $\quad \mathrm{m} * 301.6-\mathrm{m} * 630.5+250-25-\mathrm{m} * 4.05=0$
Gives $m=\frac{250-25}{4.05+630.5-301.6}=\frac{225}{332.95}=0.676 \mathrm{Kg} / \mathrm{s}$

Volume of air coming out per second will be given by

$$
\begin{aligned}
\mathrm{PV} & =\mathrm{nRT} \\
\text { Or } \quad V & =n \frac{R T}{P}=\left(\frac{1000 m}{M}\right) \frac{R T}{P}=\left(\frac{1000 * 0.676}{29}\right) \frac{8.31 * 623}{10^{6}} \\
\text { Or } & V=0.121 \mathrm{~m}^{3}
\end{aligned}
$$

Now as the exit velocity of air is $v=90 \mathrm{~m} / \mathrm{s}$ the area A of the exit duct is given by

$$
\mathrm{V}=\mathrm{A} * \mathrm{~V}
$$

Or

$$
A=V / v=0.121 / 90=1.34 * 10^{-3} \mathrm{~m}^{2}
$$

