Q- At a sand and gravel plant, sand is falling off a conveyor and onto a conical pile at a rate of 10 cubic feet per minute. The diameter of the base of the cone is approximately $3 x$ the altitude. At what rate is the height of the pile changing when the pile is 15 feet high?

Solution:

As more and more sand falling the height of the pile and the radius of the base increases. Let at some time t the height of the pile is y and thus according the question the diameter of the base is 3 y . volume of the sand in the pile is given as volume of the cone
$V=\left[(1 / 3) \pi R^{2} h\right]=(1 / 3) \pi(3 y / 2)^{2} y=(3 \pi y 3) / 4$

The rate of change of the volume of the pile is given by the differential coefficient of the volume V with respect to the time and hence
$\frac{d V}{d t}=\frac{d}{d t}\left(\frac{3 \pi y^{3}}{4}\right)=\frac{3 \pi}{4} \frac{d}{d t}\left(y^{3}\right)=\frac{3 \pi}{4} \frac{d}{d y}\left(y^{3}\right) \frac{d y}{d t}=\frac{3 \pi}{4}\left(3 y^{2}\right) \frac{d y}{d t}=\frac{9 \pi y^{2}}{4}\left(\frac{d y}{d t}\right)$
gives
$\frac{d y}{d t}=\frac{4}{9 \pi y^{2}} \frac{d V}{d t}$
Here rate of increase of volume $\mathrm{dV} / \mathrm{dt}$ is the rate of falling of sand $=10$ cubic feet per min. hence substituting the values we get, the rate of increase in height dy/dt when the height of the pile is 15 feet as--
$\frac{d y}{d t}=\frac{4 \times 10}{9 \times \pi \times 225}=\frac{8}{405 \pi}$ foot per min.
This is the required answer.

