Q- A container full of air at atmospheric pressure is Three feet below the surface in a body of water; this container is 8 feet high by 3 feet square. A 16 -inch ID valve is on the bottom of the container and a 2 -inch valve is on the top. A 2 -inch ID hose connects to this valve and extends 1 foot above the surface of the water. Both valves are opened at the same time; calculate the length of time required for the container to fill with water.

Given:

$3 \mathrm{ft} \times 3 \mathrm{ft} \times 8 \mathrm{ft}$ are dimensions of the tank, $\mathrm{h}=8 \mathrm{ft}, \mathrm{g}=32.17 \mathrm{ft} / \mathrm{s}^{2}$ is acceleration due to gravity (in FPS)

Let y be the height of water in the tank above the bottom valve at time t.
The speed of water through the tank as function of time t is given by

$$
\mathrm{v}_{2}=\mathrm{dy} / \mathrm{dt}
$$

Writing the Bernoulli equation for the water, just below and just above the lower valve where the pressures are P_{1} and P_{2} respectively. (Considering that the velocity of water outside is zero due to large area and inside is v_{1}). This gives the velocity of the flow of water in to the tank as

Or $\quad y \rho g+\frac{1}{2} \rho v_{1}^{2}=H \rho g+0$
Gives $g^{*}(H-y)=v_{1}{ }^{2} / 2$
From which we get

$$
\mathrm{v}_{1}=\sqrt{2 g(H-y)}
$$

As the area of the valve and the tank are different thus the velocity with which water rises in the tank v_{2} is given by using equation of continuity as

$$
\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}
$$

And hence the velocity of the rise of water level in the tank is given by

$$
\begin{aligned}
v_{2} & =\frac{A_{1} v_{1}}{A_{2}} \\
\text { Or } \quad \frac{d y}{d t} & =\frac{A_{1} \sqrt{2 g(H-y)}}{A_{2}}
\end{aligned}
$$

Substitute v and get the differential equation

$$
\frac{d y}{d t}=\frac{A_{1} \sqrt{2 g(H-y)}}{A_{2}}
$$

Separate variables and get

$$
\frac{d y}{\sqrt{2 g(H-y)}}=\frac{A_{1}}{A_{2}} d t
$$

Integrate both parts until the water fills the tank

$$
\int_{0}^{h} \frac{d y}{\sqrt{2 g(H-y)}}=\frac{A_{1}}{A_{2}} \int_{0}^{t} d t
$$

Integrating gives the length of time required for the container to be filled with water considering that the reservoir is large enough, so H remains constant, and $H=3+h=3+8=11 \mathrm{ft}$, we get

$$
\frac{A_{1}}{A_{2}} t=\sqrt{\frac{1}{2 g}}(-2)(\sqrt{H-h}-\sqrt{H})
$$

Or $\mathrm{t}=\frac{A_{2}}{A_{1}} \sqrt{\frac{2}{g}}(\sqrt{H}-\sqrt{H-h})$
Putting the numbers gives the answer

$$
\begin{aligned}
\mathrm{t} & =\frac{3 * 3}{\pi R^{2}} \sqrt{\frac{2}{g}}(\sqrt{H}-\sqrt{H-h}) \quad(\mathrm{R} \text { is the inner radius }=2 / 2=1 \text { inch }=1 / 12 \mathrm{ft} . \\
\text { or } \quad \mathrm{t} & =\frac{3 * 3 * 12 * 12}{3.14} \sqrt{\frac{2}{32.17}}(\sqrt{11}-\sqrt{11-3}) \\
\text { or } \quad \mathrm{t} & =412.7 * 0.249(3.317-2.828)=50.2 \mathrm{~s}
\end{aligned}
$$

