physicshelpline

Q- The leg and cast in the figure weigh $\mathrm{W}=210 \mathrm{~N}$, with the center of mass as indicated by blue arrow. The counter balance $\mathrm{W}_{1}=140 \mathrm{~N}$. Determine the weight W_{2} and the angle α needed so that no force exerted on the hip joint by the leg and cast.

The weight of the leg and cast is balanced by the tensions T_{1} and T_{2}.
Resolving the tensions in horizontal and vertical direction the net horizontal force on the system is given by
$\mathrm{T}_{2} \cos \alpha-\mathrm{T}_{1} \cos 40^{\circ}=0$
Gives $T_{2} \cos \alpha=T_{1} \cos 40^{\circ}$
Or $\quad T_{2} \cos \alpha=0.766 * T_{1}$

As T_{1} is equal to counter weight W_{1} and T_{2} is equal to counter weight W_{2} we get

$$
\begin{array}{ll}
& W_{2} \cos \alpha=0.766 * W_{1} \\
\text { or } & W_{2} \cos \alpha=0.766 * 140=107.25
\end{array}
$$

Net force on the system in vertical direction is zero and hence we get
$T_{2} \sin \alpha+T_{1} \sin 40^{\circ}-W=0$
Or $\quad T_{2} \sin \alpha+0.643 T_{1}=210$
Or $\quad W_{2} \sin \alpha+0.643 * 140=210$
Or $\quad W_{2} \sin \alpha=210-89.99=120.00$
(2)

Squaring and adding equation (1) and (2) we get

$$
W_{2}^{2}\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=107.25^{2}+120.00^{2}=25904.90
$$

Gives $\mathrm{W}_{2}=160.95 \mathrm{~N}$

Dividing equation (2) by equation (1) we get

$$
\frac{\sin \alpha}{\cos \alpha}=\frac{120.00}{107.25}
$$

Or $\quad \tan \alpha=1.19$
Or

$$
\alpha=48.21^{\circ}
$$

Hence the weight W_{2} is $160.95 \mathbf{N}$
And the angle $\alpha=48.27^{\circ}$

