physicshelpline

Q- For the network shown in Figure
a. Find the current I_{1}
b. Calculate the power dissipated by the 4Ω resistor
c. Find the current I_{2}

One end of each of the three resistors are connected to the point A and the other end of each of it is connected directly to point B. Hence all the three resistors are in parallel and connected between points A and B with potential difference $24-(-8)=32$ volts.
The equivalent resistance of the parallel combination of the three resistors is given by

Or $\quad \frac{1}{R}=\frac{1}{12}+\frac{1}{8}+\frac{1}{4}$

Gives $R=24 / 11=2.18 \Omega$

And hence
a. The current $\mathrm{I}_{1}=\mathrm{V} / \mathrm{R}=32 / 2.18=\mathbf{1 4 . 6 7} \mathrm{A}$
b. Power dissipated in 4Ω resistor is

$$
P=V^{2} / R_{3}=32^{2} / 4=\mathbf{2 5 6} \mathbf{~ w}
$$

c. The current $\mathrm{I}_{2}=\mathrm{I}_{1}=\mathbf{1 4 . 6 7} \mathrm{A}$

