Q1- A car moving at a speed of $35 \mathrm{~m} / \mathrm{s}$ enters a curve that describes a quarter turn of radius 125 m . The driver gently applies the brakes, giving a constant tangential deceleration of magnitude $1.2 \mathrm{~m} / \mathrm{s}^{2}$.
a) Just before emerging from the turn, what is the magnitude of the car's acceleration?

The tangential velocity of the car is reduced to v when it comes out of the curve due to tangential acceleration and is given by the equation
$\left[\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}\right]$
Or $\quad v^{2}=35^{2}-2 * 1.2 *(3.14 * 125 / 2)$
Or $\quad v^{2}=754$
Or $\quad v=27.46 \mathrm{~m} / \mathrm{s}$
Hence radial acceleration just before it comes out of the curve is given by

$$
\mathrm{a}_{\mathrm{r}}=\mathrm{v}^{2} / \mathrm{r}=754 / 125=6.03 \mathrm{~m} / \mathrm{s}^{2}
$$

Both accelerations are perpendicular to each other and hence the magnitude of resultant acceleration is given by

$$
\mathrm{a}=\sqrt{a_{t}^{2}+a_{r}^{2}}=\sqrt{1.2^{2}+6.03^{2}}=6.15 \mathrm{~m} / \mathrm{s} / \mathrm{s}
$$

b) At that same moment, what is the angle θ between the velocity vector and the acceleration vector? Please enter your answer in degrees.

The angle the resultant makes with the tangent to the path is given by $\tan \theta=\mathrm{a}_{\mathrm{r}} / \mathrm{a}_{\mathrm{t}}=5.03$
and $\quad \theta=78.76$ deg.
This is the angle acceleration vector a makes with tangent or a_{r} and in opposite with the velocity vector because the car is retarding. Hence the angle between the velocity vector and the resultant acceleration vector a will be

$$
180-78.76=101.24^{0}
$$

the
$\theta=101.24^{0}$

