Projectile Motion

Q2- A gun shoots bullets that leave the muzzle at 207 m/s. If a bullet is to hit a target 159.9 m away at the level of the muzzle, the gun must be aimed at a point above the target. (Neglect air resistance.)

How far above the target is this point if the angle the gun makes is less than 45°.

Let the angle of projection be θ then as the horizontal range is given by

 $R = \frac{v_0^2 \sin 2\theta}{g}$ gives 159.9 = 207² sin (2 θ)/ 9.8 Or sin(2 θ) = 0.03657 gives 2 θ = 2.0958⁰

And $\theta = 1.05^{\circ}$

As the gun aimed at this angle then the height of aiming is given by (as in previous problem)

 $Tan \theta = h/R$

Or 0.01829 = h/159.9

Or h = 2.9 m

How far above the target is this point if the angle the gun makes is greater than 45[°]

As we know that $\sin \theta = \sin (180^{\circ} - \theta)$ for the same value the other angle of projection is given by

 $Sin (2 \theta) = 180^{\circ} - 2.0958^{\circ}$

Or $2 \theta = 177.9^{\circ}$

Or $\theta = 88.95^{\circ}$

And hence $\tan \theta = H/R$ will give

H = R* tan θ = 159.9*54.6766 = 8741.839 m H = 8741.8 m