Projectile Motion

Q2- A gun shoots bullets that leave the muzzle at $207 \mathrm{~m} / \mathrm{s}$. If a bullet is to hit a target 159.9 m away at the level of the muzzle, the gun must be aimed at a point above the target. (Neglect air resistance.)

How far above the target is this point if the angle the gun makes is less than 45°.
Let the angle of projection be θ then as the horizontal range is given by

$$
\mathrm{R}=\frac{v_{0}^{2} \sin 2 \theta}{g}
$$

gives $159.9=207^{2} \sin (2 \theta) / 9.8$
Or $\quad \sin (2 \theta)=0.03657$
gives $2 \theta=2.0958^{\circ}$
And $\theta=1.05^{0}$
As the gun aimed at this angle then the height of aiming is given by (as in previous problem)

$$
\begin{array}{ll}
& \operatorname{Tan} \theta=\mathrm{h} / \mathrm{R} \\
\text { Or } & 0.01829=\mathrm{h} / 159.9 \\
\text { Or } & \mathrm{h}=2.9 \mathrm{~m}
\end{array}
$$

How far above the target is this point if the angle the gun makes is greater than 45°
As we know that $\sin \theta=\sin \left(180^{\circ}-\theta\right)$ for the same value the other angle of projection is given by

$$
\operatorname{Sin}(2 \theta)=180^{\circ}-2.0958^{\circ}
$$

Or $\quad 2 \theta=177.9^{\circ}$
Or $\quad \theta=88.95^{\circ}$
And hence $\tan \theta=\mathrm{H} / \mathrm{R}$ will give

$$
\begin{aligned}
& \mathrm{H}=\mathrm{R}^{*} \tan \theta=159.9 * 54.6766=8741.839 \mathrm{~m} \\
& \mathrm{H}=8741.8 \mathrm{~m}
\end{aligned}
$$

