Q- Find the mesh currents and the voltage V_{ab} for the given network. The source is the current source supplying a current of 3 A .

Considering the node f we get the current in R_{1} as $I_{2}-I_{1}$ and considering node e the current through R_{4} is $\mathrm{I}_{2}-\mathrm{I}_{3}$.
For mesh abefa we get (clockwise)

$$
\Sigma \mathrm{E}=\mathrm{E}_{2}=6 \mathrm{~V}
$$

And $\quad \Sigma I R=\left(I_{2}-I_{3}\right) \mathrm{R}_{4}+\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right) \mathrm{R}_{1}+\mathrm{I}_{2} \mathrm{R}_{2}$
Applying loop law for the mesh we get

$$
\left(I_{2}-I_{3}\right) R_{4}+\left(I_{2}-I_{1}\right) R_{1}+I_{2} R_{2}=6
$$

Or $\quad 4 I_{2}+6\left(I_{2}-I_{3}\right)+3\left(I_{2}-3\right)=6$
Or $\quad 13 \mathrm{I}_{2}-6 \mathrm{I}_{3}=15$
For mesh bcdeb

$$
\Sigma E=E_{3}=-4
$$

And $\quad \Sigma I R=I_{3} R_{3}-\left(I_{2}-I_{3}\right) R_{4}$
Hence by loop law

$$
I_{3} R_{3}-\left(I_{2}-I_{3}\right) R_{4}=-4
$$

Or $\quad 8 I_{3}-6\left(I_{2}-I_{3}\right)=-4$
Or $\quad 6 I_{2}-14 I_{3}=4$
Or $\quad 3 I_{2}-7 I_{3}=2$

Now equation (1)*3 - equation(2)*13 gives
$73 I_{3}=19$
Or $\quad I_{3}=19 / 73 \mathrm{~A}=\mathbf{0 . 2 6} \mathbf{A}$

Substituting in (2)

$$
\mathrm{I}_{2}=(2+7 * 2.6) / 3=1.274 \mathrm{~A}
$$

And the potential difference Vab is given by

$$
V a b=I_{2} R_{2}+E_{2}=1.274 * 4+6=\mathbf{1 1 . 0 9 6} \mathbf{V}
$$

