physicshelpline

Q- A string vibrates at its third harmonic frequency. The amplitude at a point 30 cm from one end is half the maximum amplitude. How long is the string?

The equation of standing wave on stretched string is given by ($x=0$ at one end)

$$
y(x, t)=A \sin (k x) \cos (\omega t)
$$

Here k is the wave number $2 \pi / \lambda$ and ω is the angular frequency.
And thus, the amplitude at a distance x from the end is given by

$$
A_{x}=A \sin (k x)
$$

Now as the amplitude $A x$ is half the maximum amplitude A at distance $x=30 \mathrm{~cm}$ we get

$$
\frac{A}{2}=A \sin (k x)
$$

Gives $\sin (k x)=\frac{1}{2}$
Or $\quad k x=\frac{\pi}{6}$

Substituting the value of k and x we get

$$
\frac{2 \pi}{\lambda} * 30=\frac{\pi}{6}
$$

Or

$$
\lambda=360 \mathrm{~cm}
$$

Now as the string is vibrating in its third harmonic, there will be three loops of length $\lambda / 2$ and hence total length of the string will be

$$
\mathrm{L}=3^{*}(\lambda / 2)=3^{*} 360 / 2=540 \mathrm{~cm}=5.40 \mathrm{~m}
$$

