Q- A horizontal beam of light that is incident on an equilateral prism. The base of the prism is horizontal. The prism ($\mu=1.40$) is surrounded by a liquid whose index of refraction is 1.60 . Determine the angle of emergence from the other surface. that the exiting light makes with the normal to the right face of the prism.

The prism (μ_{2}) is surrounded by liquid (μ_{1}) hence the effective refractive index is given by

$$
\mu=\frac{\mu_{2}}{\mu_{1}}=\frac{1.4}{1.6}=\frac{7}{8}=0.875
$$

Here the refractive index is less than one as light Is going from denser to rarer medium. The situation is not as we used to derive the formula hence we use the refraction at both surfaces separately.

The prism is equilateral so the angle of prism is 60° and the angle of incidence i_{1} at the first surface is 30° thus the angle of refraction at the first surface r_{1} is given by

$$
\operatorname{Sin} r_{1}=\frac{\sin i_{1}}{\mu}=\frac{\sin 30^{0}}{0.875}=\frac{0.5}{0.875}=0.5714
$$

Gives

$$
r_{1}=34.850
$$

Now as we know

$$
\begin{aligned}
& A=r_{1}+r_{2} \\
& r_{2}=60-34.85=25.15^{0}
\end{aligned}
$$

and thus the angle of refraction at the right surface i_{2} is given by (rarer to denser)

$$
\operatorname{Sin} i_{2}=\frac{\sin r_{2}}{1 / \mu}=\frac{\sin 25.15^{\circ}}{1 / 0.875}=\frac{0.425}{1.143}=0.3718
$$

This gives

$$
i_{2}=21.83^{\circ}
$$

Hence the angle the emergent ray makes with the normal will be 21.83 degree.

