learn basic concepts of physics through problem solving

Q - An AC generator supplies an rms voltage of 5.00 V to an $R C$ circuit. At a frequency of 20.0 kHz the rms current in the circuit is 37.0 mA ; at a frequency of 30.0 kHz the rms current is 50.0 mA . What are the values of R and C in this circuit?

Answer:
The impedance of a RC circuit is given by $Z=\sqrt{R^{2}+(1 / C \omega)^{2}}$ which depends on $\omega=2 \pi \mathrm{n}$.
Now $\quad \omega_{1}=2 \pi \mathrm{n}_{1}=2 \pi \times 20000=125660 \mathrm{rad} / \mathrm{s}$
and $\quad \omega_{2}=2 \pi \mathrm{n}_{2}=2 \pi \times 30000=188400 \mathrm{rad} / \mathrm{s}$
The rms current is given by $\mathrm{I}=\mathrm{V} / \mathrm{Z}$ hence $\mathrm{Z}=\mathrm{V} / \mathrm{I}$ gives
$\mathrm{R}+(1 / \mathrm{C} \omega)^{2}=\mathrm{V} / \mathrm{I}$
For first case $\quad Z_{1}{ }^{2}=R^{2}+\left(1 / C \omega_{1}\right)^{2}=\left(5 / 37 \times 10^{-3}\right) 2=18260$.
and for second $Z_{2}{ }^{2}=R^{2}+\left(1 / C \omega_{2}\right)^{2}=(5 / 50 \times 10-3) 2=10000$
Subtracting the two equations
$(1 / \mathrm{C})^{2 *}\left(1 / \omega_{1}{ }^{2}-1 / \omega_{2}{ }^{2}\right)=8260$
Or $\quad(1 / C)^{2 *}\left(1 / 4 \pi^{2} n_{1}^{2}-1 / 4 \pi n_{2}{ }^{2}\right)=8260$
Or $\quad(1 / 2 \pi \mathrm{C})^{2} *\left(1 / n_{1}^{2}-1 / n_{2}{ }^{2}\right)=8260$
Or $\quad(1 / 2 \pi \mathrm{C})^{2 *} 1.3889 * 10^{-9}=8260$
Or $\quad(1 / 2 \pi \mathrm{C})^{2}=(8260 / 1.3889) * 10^{9}=5.95 * 10^{12}$
Or $2 \pi \mathrm{C}=4.098 * 10^{-7}$
Gives $\mathrm{C}=6.52 \times 10^{-8} \mathrm{~F}=\mathbf{6 5 . 2} \mathbf{~ n F}$
Substituting in eq (2) we get
$R^{2}=10000-\left(1 / C \omega_{2}\right)^{2}$
Or $\quad R^{2}=10000-(1 / 65.2 * 10-9 * 188400)^{2}$
Or $\quad R^{2}=10000-6627=3373$
Gives $R=58 \Omega$

