physicshelpline

Q- Two positive, 1 nC charges are located on the x -axis. Charge Q_{1} is located at the origin and charge Q_{2} is located at $(4,0)$ which is 4 cm from the origin.
(a) Calculate the magnitude and direction of the force experienced by Q_{2} due to Q_{1}.

The magnitude of the force is given by Coulombs law as

$$
F_{1}=\frac{1}{4 \pi \epsilon_{0}} * \frac{Q_{1} Q_{2}}{x^{2}}
$$

Or $\quad F_{1}=\left(9 * 10^{9}\right) * \frac{\left(1 * 10^{-9} \mathrm{C}\right) *\left(1 * 10^{-9} \mathrm{C}\right)}{(0.04 m)^{2}}=5625 * 10^{-9}$
Or $\quad F_{1}=5.625 * 10^{-6} \mathbf{N}$

(b) A third charge Q_{3} of 2 nC is positioned on the y -axis at $(0,4)$ which is 4 cm from the origin.

Calculate the magnitude and direction of the total force on Q_{2} due to both Q_{1} and Q_{3}.

The distance between Q_{3} and Q_{2} is

$$
r=\sqrt{0.04^{2}+0.04^{2}}=\sqrt{0.0032} \mathrm{~m}
$$

hence magnitude of the force on Q_{2} due to Q_{3} is given by

$$
F_{2}=\frac{1}{4 \pi \epsilon_{0}} * \frac{Q_{3} Q_{2}}{r^{2}}
$$

Or $\quad F_{2}=\left(9 * 10^{9}\right) * \frac{\left(2 * 10^{-9} C\right) *\left(1 * 10^{-9} C\right)}{0.0032}=5625 * 10^{-9}$
Or

$$
F_{2}=5.625 * 10^{-6} \mathrm{~N}
$$

As the angle between F_{1} and F_{2} is 45° and they are equal in magnitude their resultant is given by

$$
F=\sqrt{F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2} \cos 45^{0}}
$$

Or

$$
F=5.625 * 10^{-6} \sqrt{2+2 \cos 45^{0}}=5.625 * 10^{-6} * 1.85=1.04 * 10^{-5} N
$$

As the two forces are equal in magnitude, the resultant will bisect the angle between them and hence the resultant force on Q_{2} due to Q_{1} and Q_{3} will be $1.04 * \mathbf{1 0}^{-5} \mathrm{~N}$ making angle $\mathbf{2 2 . 5}{ }^{\mathbf{0}}$ bellow the x direction.

