Q- A household refrigerator that has a power input of 450 W and a COP of 2.5 is to cool 5 large watermelons, 10 kg each, to $10^{\circ} \mathrm{C}$. If the melons are initially at $20^{\circ} \mathrm{C}$, determine how long it will take for the refrigerator to cool them. The specific heat of melons $=4.2 \mathrm{~kJ} /\left(\mathrm{kg} .{ }^{\circ} \mathrm{C}\right)$

The coefficient of performance (COP) of a refrigerator is the ratio of the amount of expelled to the work done or energy input.

$$
\mathrm{K}=\mathrm{Q} / \mathrm{W}
$$

And hence energy input is given by

$$
\begin{equation*}
\mathrm{W}=\mathrm{Q}_{\mathrm{L}} / \mathrm{K} \tag{1}
\end{equation*}
$$

Now the heat to be taken out
$\mathrm{Q}_{\mathrm{L}}=\mathrm{m}^{*} \mathrm{C}^{*} \Delta \mathrm{t}=\left(5^{*} 10 \mathrm{~kg}\right) *\left(4.2^{*} 10^{3} \mathrm{~J} /\left(\mathrm{kg} \cdot{ }^{0} \mathrm{C}\right) *\left[(20-10)^{0} \mathrm{C}\right]\right.$
Or $\quad Q_{L}=2.1 * 10^{6} \mathrm{~J}=2100 \mathrm{KJ}$
Hence the time required will be

$$
\mathrm{t}=\text { energy given } / \text { power }=2.1 * 10^{6} \mathrm{~J} / 450=4666.67 \mathrm{~s}
$$

Hence the time required will be 1.296 hour or 1 hour 17 min and 47 s .

