## physics<u>helpline</u>

learn basic concepts of physics through problem solving

Q- Consider the circuit in fig bellow with two ideal voltage sources. Calculate the current I in the 1  $k\Omega$  resister using the superposition theorem.



The superposition theorem states that "total current in any part of a linear circuit equals the algebraic sum of the currents produced by each source separately"

If the battery of 10 V is short circuited then the parallel combination of  $1K\Omega$  and  $4 K\Omega$  is in series with 2  $K\Omega$  resistance and hence equivalent resistance of the circuit will be

$$R = 2 + \frac{4*1}{4+1} = 2.8 \, K\Omega$$

The current in the circuit will be

I = 5/2.8K = 1.786 mA

This current will be distributed in the resistances of  $1K\Omega$  and  $4 k\Omega$  in the ratio of 4:1 and hence the current in 1 K $\Omega$  resistor will be

Now if the battery of 5 V is short circuited then the parallel combination of  $1K\Omega$  and  $2 K\Omega$  is in series with  $4 K\Omega$  resistance and hence equivalent resistance of the circuit will be

$$R' = 4 + \frac{2*1}{2+1} = 4.67 \, K\Omega$$

The current in the circuit will be

I' = 10/4.667K = 2.143 mA

This current will be distributed in the resistances of  $1K\Omega$  and  $2 k\Omega$  in the ratio of 2:1 and hence the current in 1 K $\Omega$  resistor will be

 $I_2 = 2.143 (2/3) = 1.428 \text{ mA}$ 

Hence the total current in  $1 \mbox{K} \Omega$  resistance will be

$$I = I_1 + I_2 = 1.428 + 1.428 = 2.856 \text{ mA}$$

(can be done easily using Kirchhoff's law)