physicshelpline

Q- Consider the circuit in fig bellow with two ideal voltage sources. Calculate the current I in the $1 \mathrm{k} \Omega$ resister using the superposition theorem.

The superposition theorem states that "total current in any part of a linear circuit equals the algebraic sum of the currents produced by each source separately"

If the battery of 10 V is short circuited then the parallel combination of $1 \mathrm{~K} \Omega$ and $4 \mathrm{~K} \Omega$ is in series with 2 $\mathrm{K} \Omega$ resistance and hence equivalent resistance of the circuit will be

$$
R=2+\frac{4 * 1}{4+1}=2.8 \mathrm{~K} \Omega
$$

The current in the circuit will be

$$
\mathrm{I}=5 / 2.8 \mathrm{~K}=1.786 \mathrm{~mA}
$$

This current will be distributed in the resistances of $1 \mathrm{~K} \Omega$ and $4 \mathrm{k} \Omega$ in the ratio of $4: 1$ and hence the current in $1 \mathrm{~K} \Omega$ resistor will be

$$
\mathrm{I}_{1}=1.786(4 / 5)=1.428 \mathrm{~mA}
$$

Now if the battery of 5 V is short circuited then the parallel combination of $1 \mathrm{~K} \Omega$ and $2 \mathrm{~K} \Omega$ is in series with $4 \mathrm{~K} \Omega$ resistance and hence equivalent resistance of the circuit will be

$$
R^{\prime}=4+\frac{2 * 1}{2+1}=4.67 \mathrm{~K} \Omega
$$

The current in the circuit will be

$$
\mathrm{I}^{\prime}=10 / 4.667 \mathrm{~K}=2.143 \mathrm{~mA}
$$

This current will be distributed in the resistances of $1 \mathrm{~K} \Omega$ and $2 \mathrm{k} \Omega$ in the ratio of $2: 1$ and hence the current in $1 \mathrm{~K} \Omega$ resistor will be

$$
\mathrm{I}_{2}=2.143(2 / 3)=1.428 \mathrm{~mA}
$$

Hence the total current in $1 \mathrm{~K} \Omega$ resistance will be

$$
\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}=1.428+1.428=2.856 \mathrm{~mA}
$$

(can be done easily using Kirchhoff's law)

