Q- A $3.0-\mathrm{cm}$-tall domino is located 100 cm from a concave spherical mirror of $R=30 \mathrm{~cm}$. Locate the position of the image and find the magnification.

The mirror formula is

$$
\frac{1}{f}=\frac{1}{u}+\frac{1}{v}
$$

In a concave mirror the focus is on the same side as that of object and hence the focal length f is negative. Moreover, the focal length is half of the radius of curvature hence here $\mathrm{f}=-15 \mathrm{~cm}$ and object distance $u=-100 \mathrm{~cm}$. Substituting in the formula we get

$$
\frac{1}{-15}=\frac{1}{-100}+\frac{1}{v}
$$

Or $\quad \frac{1}{v}=\frac{1}{-15}+\frac{1}{100}=\frac{-17}{300}$
Gives $v=-17.647 \mathrm{~cm}$

Negative sign shows that the image is on the same side as that of the object.

The magnification is given by
$m=-v / u=-(-17.647) /(-100)=-0.1765$

Negative sign is showing that the image is inverted.

Thus, the length of the image is given by
$\mathrm{m}=\mathrm{I} / \mathrm{O}=0.1765$

Or $\quad \mathrm{I}=3 * 0.1765=0.5294 \mathrm{~cm}$.

Hence an inverted image of height 0.53 cm is formed at a distance of 17.65 cm from the mirror on the same size of the object.

