Q- Two ideal constant voltage sources and six resistors are connected in a circuit as shown. The right most resistor is the load. Using mesh analysis calculate currents $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3}.
i) In a closed loop (mesh) the net potential drop will be zero.
ii) Due to a battery the potential is gained, hence potential drop is taken negative
iii) The potential drop across a resistance is given by $\mathrm{R} * \mathrm{I}$

Now writing mesh equations for the three loops respectively we get
For the first loop

$$
\begin{array}{ll}
& -8+1 * \mathrm{I}_{1}+2 *\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)=0 \\
\text { Or } \quad & 3 \mathrm{I}_{1}-2 \mathrm{I}_{2}=8 \quad \tag{1}
\end{array}
$$

For second loop

$$
-2 *\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)+1^{*} \mathrm{I}_{2}+2\left(\mathrm{I}_{2}-\mathrm{I}_{3}\right)+2=0
$$

Or

$$
\begin{equation*}
2 I_{1}-5 I_{2}+2 I_{3}=2 \tag{2}
\end{equation*}
$$

For third loop

$$
\begin{align*}
& -2\left(I_{2}-I_{3}\right)+1 I_{3}+1 I_{3}-2=0 \\
\text { Or } \quad & -2 I_{2}+4 I_{3}=2 \tag{3}
\end{align*}
$$

Solving the three equations we get

$$
\mathrm{I}_{1}=3.75 \mathrm{~A} ; \quad \mathrm{I}_{2}=1.625 \mathrm{~A} ; \quad \mathrm{I}_{3}=1.312 \mathrm{~A}
$$

