physics<u>helpline</u>

Q- A patient in therapy has a forearm that weighs 20.5 N and lifts a 112.0 N weight. The only other significant forces on his forearm come from the biceps muscle (which acts perpendicularly to the forearm) and the force at the elbow. If the biceps produce a pull of 232 N when the forearm is raised 43° above the horizontal, find the magnitude and direction of the force that the elbow exerts on the forearm.

The forces acting on the forearm are

Weight of forearm	w = 20.5 N vertically downward
Weight lifted	W = 112.0 N vertically downward
Force due to biceps	$Fb = 232 \text{ N} 43^{\circ}$ with vertical and
Force of elbow	Fe =? θ above the horizontal (say)

Resolving last two forces in horizontal and vertical direction and as for the equilibrium the net force in any direction should be zero, we gat

Horizontally

Fe*cos θ – Fb sin 43⁰ = 0

Or Fe*cos θ = Fb sin 43⁰ = 232*0.682 = 158.22 N ------(1)

Vertically

 $Fe^*sin \theta + Fb cos 43^0 - W - w = 0$

Or Fe*sin θ = W + w - Fb cos 43⁰ = 112.0 + 20.5 - 232 cos 43⁰ = - 37.17 N ----- (2)

Squaring and adding the two equations we have

 $Fe^2 = 158.22^2 + (-37.17)^2$

Gives Fe = 162.53 N

And dividing equation 2 by equation 1 we get

 $\tan \theta = -37.17/158.22 = -0.235$

gives $\theta = -13.22^{\circ}$ (bellow horizontal).